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The rapid testing of red blood cell (RBC) volume fraction (‘‘hematocrit”) is becoming
increasingly important to identify blood disorders (‘‘hemoglobinopathies”). Electromag-
netic techniques provide an advantageous way to measure blood properties, primarily
because they are inexpensive, quick and noninvasive. The goal of this paper is to develop
estimates of the RBC volume fraction levels of whole blood from macroscopic electromag-
netic (permittivity) measurements. The approach taken is to generate volume fraction esti-
mates by inverting classical bounds on the effective permittivity of dielectric mixtures. The
usefulness of the approach is that, given the permittivities of the plasma (known), cells
(known) and whole mixture (measured), one can determine the cell volume fraction and
compare it to the levels found in healthy blood. The deviation of the properties can be used
to help characterize certain blood disorders. The expressions developed are not limited to
RBC measurement, and are applicable to any cell-in-solution system. Through correlation
of our laboratory measurements, the analytical expressions and direct large-scale numer-
ical simulations, the results suggest that RBCs form high-permittivity cell-networks by
making cell-to-cell contact, even at relatively low volume fraction.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. General background

Red blood cells (RBCs), which are responsible for the transport of oxygen and carbon dioxide, are the most prevalent
type of cells in human blood. The average cellular volume of each cell (82–96 femtoliters) is occupied by a high concen-
tration of the oxygen carrying protein hemoglobin at a concentration of 30–36%. The lifespan of the human RBCs is
approximately 120 days after they are released from the bone marrow as reticulocytes. Typically 4–6 million RBCs per
cubic millimeter occupy 41–52% of blood volume (hematocrit). The typical bi-concaval shape of RBCs endows the cell
with ideal deformability characteristics. This allows RBCs to efficiently perform their function in small capillaries. Alter-
ations in RBC properties, including shape, volume and membrane characteristics will lead to a decreased lifespan and
when not compensated by increased production, a lower volume and anemia. Genetic disorders in cytoskeletal proteins
(the cell wall ‘‘scaffolding”) results in RBC pathologies, such as hereditary spherocytosis and hereditary elliptocytosis
[5,8,9]. Deviations in cytosolic and membrane proteins may affect the state of hydration of the cell and thereby its char-
acteristics. Fig. 1 illustrates some examples of unhealthy cell morphologies. In normal blood in addition to discocytes, ech-
inocytes and stomatocytes can be observed. Acanthocytes are observed in acquired hepatic syndromes, codocytes are
. All rights reserved.
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Fig. 1. The red blood cell membrane encloses the cytosol with hemoglobin. The membrane consists of a lipid bilayer which interacts with a spectrin
skeleton giving the normal red blood cell its typical discocyte shape. The diameter of a healthy red blood cell (7.4–8.2 lm) can be markedly different in
disease (2–11 lm) and can exhibit a variety of shapes. The drawings were created by F. Kuypers, based on the photographs of Bessis [1].
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found in thalassemia. In sickle cell disease, hemoglobin polymers will distort the shape of the cell and drepanocytes are
observed. Elliptocytes are the result of membrane disorders where interactions in the horizontal direction (e.g. spectrin–
spectin interactions) are disrupted, and spherocytes are observed in membrane disorders where the interaction between
the lipid bilayer and the underlying membrane skeleton is dysfunctional. The number of humans that are affected by
sickle cell disease, thalassemia and other hemoglobinopathies, runs in the millions [7,18]. Such disorders lead to altered
hemoglobin and result in changes in RBC properties, which is related to blood pathology, including anemia.

1.2. Objectives

The rapid testing of RBC data of individuals to define hematologic characteristics and possibly pathology is important.
Quick and inexpensive electromagnetic measurements are considered to be an important technique to measure blood prop-
erties. The goal of this paper is to develop estimates of the volume fraction levels of cells in whole blood from a simple mac-
roscopic electromagnetic measurement of the overall blood properties, at relatively low (nonoptical) frequencies (below one
GHz). The approach taken here is to develop bounds on the possible volume fraction by inverting the classical bounds on the
overall permittivity of electromagnetic mixtures. The usefulness of the approach is that given the permittivities of the buffer
(representing the plasma, known), cell (known) and whole mixture (measured) one can determine the cell volume fraction.
This information is useful to compare against the nominal volume fraction (hematocrit) values for healthy individuals.

Remark. In a previous report we described a rapid simulation of (high-frequency) light scattering by RBCs [24].
2. Laboratory experiments

The relative permittivity of RBC suspensions was measured at different volume fractions in the radio frequency (RF) range
(0.3 MHz-1 GHz) using an open-ended coaxial line sensor technique [10]. The relative permittivity of RBC suspensions was
corrected to compensate for electrode polarization effects, followed by curve-fitting which enabled extrapolations to calcu-
late the static relative permittivity.

2.1. Preparation of human red blood cells (RBC)

Blood samples from healthy donors were collected in EDTA as anticoagulant, after informed consent, at the Children’s
Hospital Oakland Research Institute (CHORI). Whole blood was kept at 4 �C and used within 24 h after collection. RBCs were
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isolated by centrifugation, plasma and the buffy coat were removed and the RBCs were washed three times in ten volumes of
phosphate-buffered saline. The RBCs were re-suspended at approximately 30% volume fraction in phosphate buffered saline
and stored at 4 �C until used within 48 h. The exact cell count in the suspension was determined using the ADIVA 120 hema-
tology system, and the suspensions were diluted to the indicated volume fraction levels.

2.2. Experimental apparatus for permittivity measurements

We used an open-ended coaxial line sensor [10] made by an SMB jack (male) connector and an E5071B network analyzer
(Agilent Technology). The network analyzer measured the sensor admittance, whose imaginary part represented the relative
permittivity of a surrounding material at the sensor end. In order to standardize the sensor, we used two kinds of dielectric
reference materials; air and deionized water. The air measurement corrected the RF phase offset between calibration and
sensor planes. The deionized water measurement (relative permittivity of 78.3 [10]) was used as a reference value of the
relative permittivity. After the sensor standardization, the relative permittivity of a buffer solution and RBC suspensions
at indicated volume fractions were measured in the frequency range from 0.3 MHz to 1 GHz at 201 distinct values.

2.3. Correction for the electrode polarization effect

The relative permittivity values contained errors from the electrode polarization effect [16,17]. At RBC concentrations of
up to 10% volume fraction the electrode polarization effect of RBC suspensions is the same as that of the buffer solution. In
our experiments we diluted the RBC suspensions within a 2–10% range, as at higher concentrations, the electrode polariza-
tion effect shows complex and nonlinear behavior, that can only be characterized using special experimental methods (re-
viewed by Schwan [16]), and is beyond the present scope of this work. Fig. 2 shows the corrected relative permittivity of RBC
suspensions with different concentration levels. Our measured permittivity data correlates well with previous reports [17].

2.4. Relative permittivity

In order to obtain the static relative permittivity, we used curve-fittings and extrapolations from the corrected relative
permittivity with sigmoidal curve functions used by Schwan [17]. The solid lines in Fig. 2 are fitted curves from the measured
values, and allowed extrapolation to the static relative permittivity from the curves. Fig. 2 shows the averages and standard
deviations of the static relative permittivity from five repeated measurements.

3. Theoretical estimates: extraction of cell data from cell-in-solution measurements

Within a sample of material, a mixture of cells and buffer in the case of interest, the properties are characterized by a
spatially variable permittivity �(x). Typically, in order to characterize the overall effective permittivity, a relation between
averages is determined (Fig. 3)
Fig. 2.
fraction
data po
hDiX ¼ �� � hEiX; ð3:1Þ
where h�iX ¼
def 1

jXj
R

X �dX is the averaging operator and D and E are the electrical flux and electric field within a statistically
representative volume element (RVE) of volume jXj. The permittivity tensor �* represents the effective overall permittivity
Measured relative permittivity of RBC suspensions for different cell concentrations (0.019 6 v2 6 0.099), which directly correspond to volume
s occupied by the cells: (a) Measured relative permittivity in the frequency range from 0.3 MHz to 1 GHz. Dots and solid lines represent measured
ints and their fitted curves (solid lines on the left), respectively; (b) Static relative permittivity for different cell concentrations.
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Fig. 3. LEFT: A representative volume element (RVE), with well-separated cells. RIGHT: An RVE with a chain-like network of cells for the same volume
fraction as on the LEFT.

1684 T.I. Zohdi et al. / International Journal of Engineering Science 48 (2010) 1681–1691
of the cell and buffer mixture. For a sample to be statistically representative, it must contain a reasonably large number of
cells. If the effective response is assumed to be linear and isotropic (a mixture of randomly oriented cells) the relation be-
tween averages can be written as
�� ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDiX � hDiX
hEiX � hEiX

s
; ð3:2Þ
where �* = �*1 and 1 is the identity tensor. Since we will be dealing with samples comprised of randomly dispersed cells in
buffer, we shall assume an overall isotropic response, hence Eq. (3.2) is appropriate to describe the effective permittivity.

3.1. Effective permittivity estimates

Estimates on �* as a function of the volume fraction and properties of the constituents have been developed over the last
150 years. For example, see works dating back to Maxwell [13,14] and Lord Rayleigh [15] (1892). There exist several other
approaches which seek to estimate or bound the aggregate responses microheterogeneous materials. The most elementary
set of estimates (which are rigorous bounds) to interpret for electrical permittivity are h��1ðxÞi�1

X 6 �
�
6 h�ðxÞiX, where �(x)

represents the spatially variable permittivity of the mixture and the upper bound is generated by assuming that the electric
field is uniform (an approximation) throughout the medium and the lower bound is generated by assuming that the electric
field flux is uniform (another approximation) throughout the medium. In the electromagnetics literature, the two-sided
bounds are often referred to as the Wiener bounds [21]. These inequalities mean that the eigenvalues of the tensors
�� � h��1i�1

X and h�iX � �* are non-negative. In the case of isotropy, the bounds may be written as
v2

�2
þ 1� v2

�1

� ��1

¼ h��1ðxÞi�1
X 6 �

�
6 h�ðxÞiX ¼ v2�2 þ ð1� v2Þ�1; ð3:3Þ
where v2 is the volume fraction of the cells (the volume fraction of the other phase is v1, where v1 + v2 = 1), �2 is the permit-
tivity of the cells and �1 is the permittivity of the surrounding buffer. Typically, the bounds are quite wide and provide only
rough qualitative information. However, improved estimates have been developed, for example the well-known Hashin–
Shtrikman bounds [11]
v2

�2
þ 1� v2

�1

� ��1

6 �1 þ
v2

1
�2��1

þ 1�v2
3�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

��;�

6 �� 6 �2 þ
1� v2
1

�1��2
þ v2

3�2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
��;þ

6 v2�2 þ ð1� v2Þ�1: ð3:4Þ
Such bounds are the tightest possible on isotropic effective responses, with isotropic two phase microstructures, where only
the volume fractions and phase contrasts of the constituents are known. Note that no further geometric information, such as
the number and nature of cells, etc., contributes to these bounds. Generally, the upper bound is more accurate (closer to the
actual effective property) for a microstructure comprised of a high-permittivity interstitial network/matrix (buffer) sur-
rounding well-separated low-permittivity regions. If the cells touch one another, then the upper bound is quite accurate,
since the cells form a high-permittivity network that separates low-permittivity buffer regions from one another (Fig. 3).
We shall employ these bounds for the rest of the analysis, however, other methods could also be used. The lower bound
is typically more accurate for microstructures where well-separated, high-permittivity, particles (cells) are surrounded by
a lower permittivity matrix (buffer). Thus, the lower bound would be more accurate at extremely low volume fraction of
cells; well below the levels tested in this paper. At very high volume fractions (also outside the scope of the present work),
neither bound would dominate. A complete survey of the estimation of effective properties of heterogeneous materials,
based on the properties of the constituents, is outside the scope of the present work. However, for a relatively survey and
analysis of a variety of analytical approaches, see Torquato [19] and for computational approaches, see Zohdi and Wriggers
[23].
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3.2. Interpreting the measurements

After a series of algebraic manipulations, the Hashin–Shtrikman bounds for the permittivity may be inverted to solve for
bounds on v2
Table 1
The me
measur
be �r1 =

v2

0.01
0.03
0.06
0.07
0.09
ð�� � �1Þ3�2

ð�� þ 2�2Þð�1 � �2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼def v�2

6 v2 6
ð�� � �1Þð2�1 þ �2Þ
ð2�1 þ ��Þð�2 � �1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def vþ2

ð3:5Þ
where inverting the upper bound Hashin–Shtrikman bound generates v�2 and inverting the lower bound Hashin–Shtrikman
bound generates vþ2 . The utility of this inversion is that given the permittivities of the buffer (known), cell (known) and
whole mixture (measured) one can determine the cell volume fraction and compare it to the nominal response of a healthy
group of cells. The relation in Eq. (3.5) is rather general, and can be used for any cell-in-solution system.

In order to illustrate how the inverted bounds may be used to aid in interpreting experiments, consider that the relative
(to vacuum) permittivity of hemoglobin (or ‘‘cell-only”) responses is approximately �2/�0 � 6000 (an estimate, since it is dif-
ficult to measure a ‘‘pure” interior cell material), while the buffer was �1/�0 = 81.12 (measured). With this information, and
the overall response measurements made before one can generate the volume fraction bounds (Table 1). Recall, that the
upper bound is quite accurate for touching cells, forming networks, which appears to be the present case. In order to provide
a clear, continuous, calibration, we form a convex combination of the upper and lower bounds (0 6 hv 6 1)
v2 ¼ hvvþ2 þ ð1� hvÞv�2 ; ð3:6Þ
where, provided measurements are made for v2 (as they have been made in this study), one can solve for the hv value, rep-
resenting which bound (and microstructural morphology) is dominant
hv ¼
v2 � v�2
vþ2 � v�2

: ð3:7Þ
Specifically,

� hv < 1/2 indicates that v�2 is dominant, which is generated by the Hashin–Shtrikman upper bound, where the effective
response is indicative of cells touching, while
� hv > 1/2 indicates that vþ2 is dominant, which is generated by the Hashin–Shtrikman lower bound, where the effective

response is indicative of well-separated cells.

The derived bounds on v2 (v�2 6 v2 6 vþ2 ) are general and hold for any combination of known values of �1, �2 and �*. For
the case at hand, hv (Table 1) is comfortably less than 1/2 (the lower volume fraction bound being more accurate, generated
by the Hashin–Shtrikman permittivity upper bound) leading to the hypothesis that the cells are touching and forming high-
permittivity networks. Although the high-permittivity network effect is dominant at very low volume fractions, the effect is
steadily less so with increasing volume fraction, characterized by an increasingly larger hv. Alternatively, one could directly
relate the quality (narrowness) of the bounds on the permittivity to the measure value by writing (0 6 h� 6 1)
�� ¼ h���þ þ ð1� h�Þ���; ð3:8Þ
where, provided measurements are made for �* (as they have been made in this study), one can solve for the h� value, rep-
resenting which bound (and microstructural morphology) is dominant
h� ¼
�� � ���
��þ � ��� : ð3:9Þ
As with the hv metric (however, essentially reversed): (1) if h� > 1/2, this indicates that �* + is dominant, which is the Hashin–
Shtrikman upper bound, where the effective response is indicative of by cells touching, while (2) if h� < 1/2 this indicates that
�*� is dominant, which is the Hashin–Shtrikman lower bound, where the effective response is indicative of well-separated
asured (relative permittivity, �i = �ri�o, �o being the vacuum permittivity) response for radiation at 1 MHz. Volume fractions above 0.1 were difficult to
e because the polarization effect cannot be canceled at the higher volume fraction values. The relative permittivity of the buffer alone was measured to
81.12.

��r (measured mean) v�2 (from �*+) vþ2 (from �*�) hv(calculated) ���r ðv2Þ ��þr ðv2Þ h�(calculated)

9 147.14 0.0177382 0.2348342 0.0058123 85.6437922 157.0738288 0.9289679
8 221.97 0.0350468 0.3816693 0.0085199 90.3389545 233.9887411 0.9163330
0 297.05 0.0534005 0.4894688 0.0151342 96.0026452 324.2729706 0.8807423
6 352.67 0.0668532 0.5490572 0.0189688 100.2838741 390.7757183 0.8688235
9 422.40 0.0835484 0.6077450 0.0294767 106.6929048 487.6406536 0.8287412
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cells. This is alternative, yet equivalent representation of the cell-system behavior. As Table 1 indicates, h� is comfortably
larger than 1/2, again indicating that the Hashin–Shtrikman upper bound is dominant.

Remark. It is important to note that the hypothesized network connectivity of cells occurs at low volume fractions, as tested
in our experiments, where the cell suspensions were continuously mixed to avoid cells from settling at the bottom of the test
apparatus. We emphasize that, in the experiments, the mean values of different random realizations of cells were measured
and recorded in the previous Fig. 2 and Table 1. It is important to emphasize that this connectivity is not a Rouleux formation
(‘‘coin stacking”) arrangement which is sometimes observed at high volume fractions.
3.3. Observations

The correlation of the measurements and the analytical expressions (bounds) imply that RBCs form high-permittivity
cell-networks by making cell-to-cell contact, even at low volume fractions. This observation is extremely important in order
to make reliable estimates of volume fraction levels from overall cell-in-solution measurements. However, in order to
strengthen this cell-network hypothesis, we continue with large-scale numerical simulations.

4. Computational simulation of multiple cell samples

4.1. Outline of the approach

Direct computational experiments are achieved by solving Maxwell’s equations numerically over samples of cells. This
type of calculation has been performed for other general thermally-coupled electromagnetic heterogeneous media in Zohdi
[25], and we follow a simplified version of that approach presently. In order to achieve this, we utilize a mathematical rep-
resentation of the nominal bi-concaval RBC shape (Figs. 3 and 4)
F ¼def 2ðz� zoÞ
b

� �2

� 1� ðx� xoÞ2 þ ðy� yoÞ
2

b2

 !
� co þ c1

ðx� xoÞ2 þ ðy� yoÞ
2

b2

 !
þ c2

ðx� xoÞ2 þ ðy� yoÞ
2

b2

 !2
0
@

1
A2

¼ 0;

ð4:1Þ
where the geometrical parameters, co, c1 and c2 are found in the work of Evans and Fung [6] (for example, co = 0.207161,
c1 = 2.002558 and c2 = �1.122762), and where b is the radius of the cells. One can use this parametrization, in conjunction
with a finite-difference mesh or finite-element mesh to develop a representation of a group of cells. For the numerical
experiments, the position and orientation of each cell in the sample was random and not touching any neighboring cells
(Figs. 4 and 5). The classical random sequential addition (RSA) algorithm (for placing non-intersecting objects in a domain)
was used to place nonoverlapping cells randomly into the domain of interest [20]. This algorithm was adequate for the
volume fraction range of interest. However, if higher volume fractions are desired, more sophisticated algorithms, such
as the well-known, equilibrium-based, Metropolis algorithm can be used, while for extremely high volume fractions, ap-
proaches based on particle flow and growth are preferable [19,12,2–4]. The random orientation of the cells was controlled
by using a random angle in a standard rotational coordinate transformation of the axes in Eq. (4.1) after placement within
the domain.
Fig. 4. A schematic of a mesh (actual meshes are much finer, see Fig. 5).



Fig. 5. Numerical (mesh) representation of a typical RBC (left) and a sample of blood at a volume fraction of v2 = 0.094 (right). On the right is the resolution
of the cell-system with a 101 � 101 � 101 mesh which has 6181806 electromagnetic degrees of freedom. Approximately beyond the 61/81 mesh-density
level there were no perceivable changes in the results.

T.I. Zohdi et al. / International Journal of Engineering Science 48 (2010) 1681–1691 1687
4.2. Computational effective property calculation

We now develop a direct numerical scheme, based on the Finite Difference Time Domain (FDTD) Method to determine the
electromagnetic response of a sample of blood by solving the coupled Maxwellian system (Faraday’s law)
Fig. 6.
r� E ¼ � @ðl � HÞ
@t

ð4:2Þ
and (Ampere’s law)
r� H ¼ @ð� � EÞ
@t

: ð4:3Þ
In order to perform volume averaging over an RVE, to obtain �* computationally, we employ a ‘‘framing” technique, whereby
uniform far-fields are applied on the boundary of a large sample, and the fields are averaged over an interior subsample, in
order to avoid boundary layer effects, which occur from imposing the uniform fields on the larger sample exterior (Fig. 6).
This is akin to exploiting a ‘‘St. Venant-type” decay effect, commonly exploited in solid mechanics, to avoid boundary layers.
The approach provides a way of determining what the microstructure really experiences, without ‘‘bias” from the boundary
loading. In order to determine �*(or any effective property), one specifies three uniform (spatially constant) linearly indepen-
dent loadings of the form, for example either E or D. Each of the loadings provides three linearly equations which can be used
to solve for the nine constants in a general anisotropic effective permittivity tensor �* (in reality there are only six constants,
because �* is symmetric). If the overall response is isotropic, which is the present case, since we have a mixture of randomly
oriented cells, then only one test loading is needed, and the effective permittivity is given by Eq. (3.2). The practical imple-
mentation of ‘‘framing” is:

� STEP (1): Generate a sample with a certain number of cells in its interior to meet the volume fraction under investigation,
� STEP (2): For the effective property calculation (averaging), select a subsample (‘‘a sub-box”, Fig. 6) in the interior (to avoid

boundary layer effects that arise from the imposition of uniform boundary conditions),
SUBSAMPLE
DOMAIN

UNIFORM BC’S APPLIED HERE

A cell sample with uniform boundary fields applied to its exterior and an interior subsample for averaging purposes (to avoid boundary layer effects).
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� STEP (3): Repeat STEPS (1) and (2) for different random realizations for at a given sample sample size, and ensemble aver-
age the effective properties to determine a mean (�*) value,
� STEP (4): Repeat STEPS (1)–(4) for a larger sample,
� STEP (5): Continue the process (STEPS (1)–(4)) until the effective property ceases to change to within an acceptable

tolerance.

The general discretization process follows an approach found in Zohdi [25], and is briefly outlined in the next section.
Remark. Similar relations holding for the magnetic permeability, relating the magnetic field flux (B) and the magnetic field
(H), hBiX = l* � hHiX, and in the case of overall isotropy
l� ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBiX � hBiX
hHiX � hHiX

s
: ð4:4Þ
4.3. Numerical discretization of Maxwell’s equations

Following a general procedure found in Zohdi [26], let us now consider the direct numerical simulation of a blood sample
by defining
@ðlHÞ
@t

¼ �rx � E ¼def F and
@ð�EÞ
@t
¼ rx � H ¼def G: ð4:5Þ
We discretize for time = t + /Dt, and using a trapezoidal ‘‘/ � scheme” (0 6 / 6 1)
ðlHÞðt þ DtÞ � ðlHÞðtÞ
Dt

� Fðt þ /DtÞ � /Fðt þ DtÞ þ ð1� /ÞFðtÞ ð4:6Þ
and
ð�EÞðt þ DtÞ � ð�EÞðtÞ
Dt

� Gðt þ /DtÞ � /Gðt þ DtÞ þ ð1� /ÞGðtÞ: ð4:7Þ
Rearranging, yields
Hðt þ DtÞ � ðlHÞðtÞ
lðt þ DtÞ þ

Dt
lðt þ DtÞ /Fðt þ DtÞ þ ð1� /ÞFðtÞð Þ ð4:8Þ
and
Eðt þ DtÞ � ð�EÞðtÞ
�ðt þ DtÞ þ

Dt
�ðt þ DtÞ /Gðt þ DtÞ þ ð1� /ÞGðtÞð Þ: ð4:9Þ
Numerically, the components of the curl of functions such as E are approximated by central finite-difference stencils of the
form (Fig. 4):
@EðxÞ
@x

� Eðxþ DxÞ � Eðx� DxÞ
2Dx

; etc: ð4:10Þ
In order to construct a solution, the algorithm is as follows:

(1) Spatio-temporal discretization: Construct spatial derivative terms such as
@EðxÞ
@x

� Eðxþ DxÞ � Eðx� DxÞ
2Dx

; ð4:11Þ
for each node (i, j,k), in conjunction with time-discretizations in Eqs. (4.8) and (4.9), leading to coupled systems abstractly
written as
HtþDt ¼ FðEtþDt ;HtþDtÞ and EtþDt ¼ GðEtþDt ;HtþDtÞ: ð4:12Þ
(2) Staggered solution: Compute E-field with H fixed, then compute H-field with E fixed, and iterate, K = 1,2. . . for
HtþDt;K ¼ FðEtþDt;K ;HtþDt;K�1Þ and EtþDt;K ¼ GðEtþDt;K�1;HtþDt;K�1Þ: ð4:13Þ
(3) Staggering error check: Compute error measures: -�K ¼
def maxð-E�K ;-H�KÞ; i ¼ 1; . . . ;nodes
-K�E ¼def
PN

i¼1kE
Lþ1;K
i � ELþ1;K�1

i kPN
i¼1kE

Lþ1;K
i � EL

i k
; -K�H ¼def

PN
i¼1kH

Lþ1;K
i � HLþ1;K�1

i kPN
i¼1kH

Lþ1;K
i � HL

i k
: ð4:14Þ
(4) Updates: When the tolerance is met, -* 6 Ctol then increment time forward: t = t + Dt.
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Remark. The time-step size used in the upcoming simulations allowed the algorithm to easily converge within a few iter-
ations at each time-step. However, for more strongly-coupled systems, temporal (time-step) adaptivity is usually needed.
Implicit, iterative procedures, with time-step adaptivity, are ideal for strongly-coupled thermo-electromagnetic and nonlin-
ear systems (see [25]).
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Fig. 7. Starting from left to right and top to bottom, the progressive evolution of the (normalized) electrical field kEk
kEj@X ðt¼TÞk magnitude within an 0.8-probe

subsample (20% into the interior). Ej@X ¼ ð109;109;109Þ t
T, is the field applied on the exterior surface of the sample of blood at a volume fraction of v2 = 0.094.
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4.4. A model problem

As a model problem, we considered a group of Np randomly dispersed, well-separated. cells, of equal size, in a cubical
domain of dimensions, D � D � D (0.80 � D, was selected as the length-scale of the subsample). This sample size (and hence
the number of cells, with the volume fraction held constant) was successively enlarged until there were no significant
changes in the overall system response (�*) for further enlargements. For a more in depth discussion on size-effect issues
for this class of systems, see the works of Zohdi [22,23,25]. We found that a sample that contained approximately
Np = 100 cells (Fig. 5) was adequate, i.e. further sample enlargements produced negligible changes in the computed effective
properties. The following system parameters were used: �o = 8.854 � 10�12 f/m, lo = 4p � 10�7Ns2/C2, the electric field on
the boundary (linearly-growing), EjX ¼ ð109;109;109Þ t

T, initial conditions, E(t = 0) = (0,0,0), magnetic field on the boundary

(linearly-growing) and HjX ¼ ð109;109;109Þ
ffiffiffiffi
lo
�o

q
t
T, initial conditions, H(t = 0) = (0,0,0). The relative magnetic permeability

was set to 1 for the cells, l2r = 1 and for the matrix, l1r = 1 (the magnetic heterogeneity (mismatch) is essentially negligible).
The relative permittivity of the cells was approximately �2/�0 = 6000, while the buffer was �1/�0 = 81.12. The cell size and

volume fraction were determined by a cell/sample size ratio, which was defined via a subvolume size V ¼def D�D�D
Np

. As an exam-

ple, we used a volume fraction of approximately v2 = 0.094, which corresponded to cells with a length-scale of L ¼ 0:375,

which is a non-dimensional ratio between the major cell radius (b) and the subvolume given by L ¼def b

V
1
3
. The length-scale

dimension of the sample was D = 50 lm (see Fig. 7).
The meshes were sequentially refined in the following manner: (I) a 41 � 41 � 41 mesh which has 413526 nodal electro-

magnetic unknowns, (II) a 61 � 61 � 61 mesh which has 1361886 nodal electromagnetic unknowns, (III) a 81 � 81 � 81 mesh
which has 3188646 nodal electromagnetic unknowns and (IV) a 101 � 101 � 101 mesh which has 6181806 nodal electromag-
netic unknowns. Approximately beyond the 61/81-level there were no perceivable changes in the results. In Fig. 8, the pro-
gressive evolution of the effective permittivity, �*, from direct numerical simulation, within an 0.8-probe subsample (20%
into the interior). The steady state relative effective permittivity value for this well-separated system was approximately
��r ¼ ��=�o � 125, as opposed to the measured value (for the same volume fraction) of approximately ��r ¼ ��=�o � 400. Thus,
a system of well-separated cells is incapable of producing the observed experimental results, again suggesting the hypoth-
esis that the the real system possesses network of touching cells.

5. Discussion and concluding remarks

The goal of this communication was to develop estimates of the volume fraction (hematocrit) levels from a macroscopic
electromagnetic measurement of the overall permittivity of the cell-in-solution mixture. The approach taken here was to
develop bounds on the possible volume fraction level by inverting the classical Hashin–Shtrikman bounds [11] on the effec-
tive response of electromagnetic mixtures. The utility of the approach is that given the permittivities of the buffer (known),
cell (known) and whole mixture (measured) one can determine the cell volume fraction and compare it to the nominal re-
sponse of a healthy group of cells. The deviation of the electromagnetic properties can be used to characterize certain blood
disorders (thalassemia).

It is important to note that the expressions in Eq. (3.5) are valid for any combination of known values, �1, �2 and �� to
obtain bounds on cell volume fraction (v2) not necessarily just those of RBC mixtures. Through correlation of our laboratory
measurements and the analytical expressions (bounds), it is hypothesized that RBCs may form high-permittivity cell-net-
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Fig. 8. The progressive evolution of the effective permittivity, �*, from direct numerical simulation, within an 0.8-probe subsample (20% into the interior).
EjX ¼ ð109;109;109Þ t

T, is the field applied on the exterior surface of the sample of blood at a volume fraction of v2 = 0.094. The steady state value for this
well-separated system was approximately ��r � 125, as opposed to the measured value (for the same volume fraction) of approximately ��r � 400, leading to
the hypothesis that the real system must possess cell-network chains.
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works by making cell-to-cell contact, even at low volume fraction. Furthermore, this work developed a computational elec-
tromagnetic technique, based on an implicit finite-difference discretization to solve the time-transient Maxwell’s equations,
in order to determine the response of samples of red blood cells, which was then used to indicate that it is impossible to
generate the measured high overall (mixture) permittivities with well-separated cell morphologies. This again suggests
the hypothesis that the cells may form networks, which is a subject of ongoing investigation by the authors.
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