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Abstract This work investigates the deformation of charged fabric via external electro-
magnetic fields. A reduced-order model is constructed by combining a yarn-segment net-
work representation with dynamic discrete/lumped charged-masses. The deformation of the
fabric is dictated by solving a coupled system of differential equations for the motion of
the lumped charged-masses, which are coupled through the yarn-segments. Initially, the
effects of the electric and magnetic fields are analytically studied for the components (yarn-
segment network and charged-masses) that comprise the model. Quantitative numerical sim-
ulations are then provided for the entire, assembled, larger-scale, coupled system, based on
a computationally-efficient time-stepping algorithm. The model is relatively easy to im-
plement and provides analysts with a straightforward tool to study electromagnetic fabric
systems.

Keywords Fabric networks · Electromagnetics

Mathematics Subject Classification (2000) 74K05 · 74K35 · 74F15

1 Reduced Order Fabric Network Model

This work studies the deformation of an electromagnetically-sensitive fabric (textile) struc-
ture, induced by external electric and magnetic fields. There are many applications for
such materials, for example electromagnetic actuators, micro-electromechanical systems
(MEMS), etc. We assume that the fabric can carry a charge. One way of achieving this is by
adding charged fine-scale particles to a polymer matrix, for example using ion-implantation
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Fig. 1 A network representation of woven-fabric by coupled yarn-segments. The yarn-segments are joined
together by pin-joints to form a network, and the mass and electrical charge of the material are lumped at the
connection points

processing techniques, from which the (nominal) yarn (Fig. 1) is fabricated. The present
study investigates the connection between the electromagnetic loading and fabric actuation,
building on the recent analysis of Zohdi [46], which focused on a specific application in-
volving electromagnetic ballistic fabric shielding, whereby the Lorentz force was harnessed
to enhance material resistance capabilities beyond purely mechanical effects, in a projectile
contact/impact loading regime. Here, we focus more deeply on what effects an external elec-
tromagnetic field has on such fabrics. We model the entire structure (Fig. 1) by combining a
fabric network model with discrete/lumped charged-masses. The charges are assumed to be
fixed (implanted) in the fabric. Dynamically running current through the fabric is not con-
sidered in this work, however, some comments on such an approach are given at the end of
this work. As a model problem, we consider an undeformed (initially planar) yarn-segment
network representation of a woven fabric (Fig. 1), and make two primary simplifying as-
sumptions: (1) the yarn-segments are pin-joined at the nodes, producing no moments, to
form a network and (2) the electrically-charged state of the fabric is represented by dis-
crete lumped “charged-masses” whose locations coincide with those of the pin-joints. The
deformation of the fabric is dictated by solving a (“yarn-coupled”) system of differential
equations for the motion of the interconnected lumped charged-masses.

Remark The “functionalization” or “tailoring” of materials by the addition of fine-scale par-
ticles (“particulates”) is a process that has a long history in engineering. The usual approach
is to add particulates that possess a desired property to enhance a base (binder) material.
The development of mathematical (homogenization) models to determine the resulting ef-
fective properties of such materials dates back to the 1800s, for example Maxwell [23, 24]
and Lord Rayleigh [30], to name a few. There are many homogenization techniques avail-
able in the literature, which seek to estimate the aggregate responses microheterogeneous
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materials. For a thorough analysis of many of such methods, see Torquato [34], Jikov et al.
[19], Hashin [17] and Nemat-Nasser and Hori [26] for solid-mechanics oriented treatments
and Zohdi and Wriggers [48] for computational aspects. For a series of works on continuum
modeling and finite-element simulation of the deformation of magnetoelastic functionalized
membranes and films (for example mixtures of iron powder and polydimethlsiloxane), we
refer the reader to recent studies by Barham et al. [4–7]. Applications for such materials are
driven by the extensive sensor, actuator and MEMS industries. See, for example, Rebeiz et
al. [32], Quandt and Ludwig [31], Grimes et al. [13] and Kouzoudis and Grimes [21, 22],
Azevedo et al. [3], Jones et al. [20] and Myers et al. [25] for specific applications.

2 Yarn-segment Network Representation of Fabric

We assume that the compressive response of the fabric (yarn-segment) is insignificant for
the applications under consideration, and employ a so-called relaxed model, whereby a zero
stress state is enforced for a compressive state. For details on a wide variety of relaxed
models, we refer the reader to works dating back to Pipkin [28], Buchholdt et al. [8], Pan-
giotopoulos [27], Bufler and Nguyen-Tuong [9] and Cannarozzi [10, 11], Steigmann [33],
Haseganu and Steigmann [14–16] and Atai and Steigmann [1, 2]. Relaxed formulations have
served as a foundation for computational models describing rupture of ballistic fabric shield-
ing in Zohdi [36, 43, 46], Zohdi and Steigmann [37], Zohdi and Powell [41] and Powell and
Zohdi [29] and are the basis for the present approach.

In addition to the previously mentioned assumptions, we further assume that: (1) the
yarn-segments are quite thin, experiencing a uniaxial-stress condition, whereby the forces
only act along the length of the yarn-segments, (2) the yarn-segments remain straight, un-
dergoing a homogeneous (axial) stress state and (3) yarn-segment buckling phenomena is
insignificant. We write one-dimensional constitutive laws in terms of the Piola-Kirchhoff
stresses (mimicing 3-D approaches), defined by

P = force on referential area

referential area
, (1)

and then transform the result to the second Piola-Kirchhoff stress via P = US, where U =
L
Lo

is the stretch ratio, L is the deformed length of the yarn-segment, Lo is its original length
and where we note that for a relaxed model, when U ≤ 1 (compression), we enforce P = 0.
A standard constitutive relation S = F (U) is then employed, with the primary objective
being to extract the force carried in the yarn-segment (ψyarn), which is needed later for the
dynamics of the lumped charged-masses. Specifically,

P = ψyarn

Ao

⇒ ψyarn = USAo = L

Lo

SAo. (2)

We shall adopt a simple one-dimensional model for the stored energy, W = 1
2 EE 2, where

E is Young’s modulus and E def= 1
2 (U 2 − 1) is the Green-Lagrange strain, with the second

Piola-Kirchhoff stress given by ∂W
∂E = S = EE . Thus, for the yarn-segment,

P = ψyarn

Ao

⇒ ψyarn = USAo = L

Lo

SAo = L

2Lo

E

((
L

Lo

)2

− 1

)
Ao. (3)
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3 Charged-mass Motion

The dynamics of the lumped charged-masses are given by

mi r̈ i = ψ tot
i︸︷︷︸

total

= ψem
i︸︷︷︸

electromagnetic forces

+
4∑

I=1

ψ
yarn

iI

︸ ︷︷ ︸
surrounding yarn

, (4)

where i = 1,2, . . . ,N , where N is the number of lumped charged-masses, ψem
i represents

the electromagnetic contribution, ψ
yarn

iI represents the contributions of the four yarn inter-
secting at charged-mass i (Fig. 1) and mi is the mass of a single lumped charged-mass (the
total fabric mass divided by the total number of charged-masses). The forces from the I th
surrounding yarn-segment (there are four of them for the type of rectangular weaving pat-
tern considered) acting on the ith lumped charged-mass is ψ

yarn

iI = UISIAoaiI (Ao is the
undeformed cross-sectional area of the yarn), where the unit axial yarn direction is given by

aiI = r+
I

−r−
I

‖r+
I

−r−
I

‖ , where r+
I denotes the position vector of the endpoint connected to the lumped

charged-mass and r−
I denotes the endpoint that is connected to it neighboring charged-mass

(Fig. 1).1 Clearly, ψ
yarn

iI is a function of the charged-mass positions (r i ), which are all cou-
pled together, leading to a system of equations. In order to solve the resulting coupled sys-
tem, we develop an iterative solution scheme later in the presentation.

To describe the electromagnetic behavior of the lumped charges (qi )/masses (mi ) in the
model, recall the main observations in conjunction with electromagnetic phenomena (Jack-
son [18]), namely (a) in the presence of an external electric field, Eext , a point charge
q experiences a force ψe = qEext and (b) in the presence of an external magnetic field,
Bext , if a point charge is moving with velocity v, then the point charge experiences a force
ψm = qv ×B . Thus, if a (point) charged-mass is moving through the region possessing both
electric and magnetic fields, then

ψem
i = ψe

i + ψm
i

def= qi(E
ext + vi × Bext ). (5)

Here, we assume that Eext and Bext are static, uncoupled and independently controllable.
In other words, the external fields are assumed to be independent of the response of the
system (dead loading). Furthermore, for the problems of interest here, we assume that the
electromagnetic interaction between charged-masses is negligible, relative to the externally-
applied field. For detailed charged-mass interaction formulations and simulation techniques,
we refer the reader to Zohdi [38–45].

4 Qualitative Dependency of Network Deformation on Electromagnetics

Consider purely electrical loading (no magnetic field), and a single charged-mass joined
to four pieces of yarn-segments, all of which are secured to a rigid foundation (Fig. 2).

1‖ · ‖ indicates the Euclidean norm in R3.
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Fig. 2 A single yarn-unit. LEFT:
top view and RIGHT: side view

Performing a static force balance yields

qEext = 2PAo

δ

L
= 2USAo

δ

L
= L

Lo

E

(
L2

L2
o

− 1

)
Aoδ = EAo

δ3

L3
o

⇒ δ = Lo

(
qEext

AoE

)1/3

. (6)

The key observation is that the deformation (δ) depends linearly on the original length, Lo,
has an cube-root (sublinear) dependency on the product of the charge and electric field,
and has an inverse-cubic dependency on the product of the original cross-sectional area and
Young’s modulus.

Remark For the magnetic fields to induce a comparable deformation, one must have

‖Eext‖ ≈ ‖v × Bext‖ ≤ ‖v‖‖Bext‖, (7)

thus ‖Bext‖ ≥ ‖Eext ‖
‖v‖ . In order to understand the electrically- and magnetically-induced ten-

dencies on the system, we first study an isolated charged-mass under the influence of an
electromagnetic field, next.

5 Induced Isolated (Unconstrained) Charged-mass Motion

We consider an isolated lumped charged mass (Fig. 3) with position vector denoted by r

(ṙ = v, r̈ = v̇), whose unconstrained motion is governed by

mv̇ = q(Eext + v × Bext ). (8)

The governing (8), written in component form is, for the x1-component

v̇1 = q

m
(Eext

1 + (v2B
ext
3 − v3B

ext
2 )), (9)

for the x2-component

v̇2 = q

m
(Eext

2 − (v1B
ext
3 − v3B

ext
1 )), (10)
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Fig. 3 An isolated charged-mass
with an applied “dead”
electromagnetic field for special
cases # 1 and # 2

and for the x3-component

v̇3 = q

m
(Eext

3 + (v1B
ext
2 − v2B

ext
1 )), (11)

where Eext = (Eext
1 ,Eext

2 ,Eext
3 ) is an independent external electric field (not dependent on

the charged-masses (“dead”)) and Bext = (Bext
1 ,Bext

2 ,Bext
3 ) is an independent external mag-

netic field. These coupled equations can be solved analytically for an isolated charged-mass.
We consider two relevant cases.

5.1 Special Case # 1: No Magnetic Field (Eext = Eext
3 e3 and Bext = 0)

In the special case when there is no magnetic field, if r(t = 0) = 0, v(t = 0) = 0, Bext = 0
and Eext = Eext

3 e3, the solution for the dynamics of an isolated charged-mass is

⎡
⎣v1(t)

v2(t)

v3(t)

⎤
⎦=

⎡
⎣ 0

0
q

m
Eext

3 t

⎤
⎦ ⇒

⎡
⎣ r1(t)

r2(t)

r3(t)

⎤
⎦=

⎡
⎣ 0

0
q

2m
Eext

3 t2

⎤
⎦ . (12)

5.2 Special Case # 2: Combined Electric and Magnetic Fields (Eext = Eext
3 e3 and

Bext = Bext
1 e1)

Now consider both the electric and magnetic fields to be present, r(t = 0) = 0, v(t = 0) = 0,
Bext = Bext

1 e1 and Eext = Eext
3 e3, consequently, for an isolated charged-mass

⎡
⎣v1(t)

v2(t)

v3(t)

⎤
⎦=

⎡
⎢⎢⎣

0

(
Eext

3
Bext

1
)(1 − cosωt)

(
Eext

3
Bext

1
) sinωt

⎤
⎥⎥⎦ ⇒

⎡
⎣ r1(t)

r2(t)

r3(t)

⎤
⎦=

⎡
⎢⎢⎣

0

(
Eext

3
Bext

1
)(t − sinωt

ω
)

(
Eext

3
Bext

1 ω
)(1 − cosωt)

⎤
⎥⎥⎦ , (13)

where ω = qBext
1

m
is known as the cyclotron frequency. The cyclotron frequency (gyrofre-

quency) is the angular frequency at which a charged-mass makes circular orbits in a plane
perpendicular to the static magnetic field (see Jackson [18] for general comments and Zohdi
[45] for specific applications to particulate flows). The x1-magnetic field causes a “pull” in
the x2-direction, provided that there is an x3-component of the electric field. We remark that
as Bext

1 → 0 then the solutions in (13) converge to (12), which can be proven by repeated us
of L’Hospital’s rule. General solutions are considered next.
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5.3 General Solutions: Magnetic Rotation Axes

The coupling term v × Bext , which can explicitly be written in the following matrix form:

v × Bext =
⎡
⎣ 0 Bext

3 −Bext
2

−Bext
3 0 Bext

1
Bext

2 −Bext
1 0

⎤
⎦
⎡
⎣v1

v2

v3

⎤
⎦ def= A · v. (14)

The system of equations can be written as

v̇ − q

m
A · v = q

m
E. (15)

We define an “eigensystem” via

v = T · v̂ (16)

and insert into the governing equations to yield

˙̂v − q

m
(T −1 · A · T )︸ ︷︷ ︸

K

v̂ = q

m
T −1 · E. (17)

The proper choice of T to decouple the system is to form T from the eigenvectors of A. The
eigenvalues are computed from

v × Bext =
∣∣∣∣∣∣

−λ Bext
3 −Bext

2
−Bext

3 −λ Bext
1

Bext
2 −Bext

1 −λ

∣∣∣∣∣∣= 0

⇒ λ1 = 0, λ2 = −i‖Bext‖, λ3 = +i‖Bext‖. (18)

For the first eigenvector (λ1 = 0)

�(1) = 1

‖Bext‖

⎡
⎣Bext

1
Bext

2
Bext

3

⎤
⎦ . (19)

For the second eigenvector (λ2 = −i‖Bext‖)

�(2) = 1

γ

⎡
⎣Bext

1 Bext
2 − iBext

3 ‖Bext‖
−(Bext

1 )2 − (Bext
3 )2

Bext
2 Bext

3 + iBext
1 ‖Bext‖

⎤
⎦ , (20)

where

γ =
√

|(Bext
1 )2 + (Bext

3 )2|2 + |iBext
1 ‖Bext‖ + Bext

2 Bext
3 |2 + |Bext

1 Bext
2 − iBext

3 ‖Bext‖|2.

(21)
For the third eigenvector (λ2 = i‖Bext‖)

�(3) = 1

γ̂

⎡
⎣Bext

1 Bext
2 + iBext

3 ‖Bext‖
−(Bext

1 )2 − (Bext
3 )2

Bext
2 Bext

3 − iBext
1 ‖Bext‖

⎤
⎦ , (22)
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where

γ̂ =
√

| − (Bext
1 )2 − (Bext

3 )2|2 + |Bext
1 Bext

2 + iBext
3 ‖Bext‖|2 + |Bext

2 Bext
3 − iBext

1 ‖Bext‖|2.

(23)

The first eigenvector indicates the direction of the axis of rotation, while the second and third
(complex-conjugate) eigenvalues dictate a (cyclotron) frequency and a radius of a helical
circle. See Zohdi [45] for an analysis of trajectories and Jackson [18] for more general
treatments.

One can decouple the coupled (vector component) system by forming a matrix from the
following set of eigenvectors:

⎡
⎢⎣

�
(1)

1

�
(1)

2

�
(1)

3

⎤
⎥⎦

λ=λ1

,

⎡
⎢⎣

�
(2)

1

�
(2)

2

�
(2)

3

⎤
⎥⎦

λ=λ2

,

⎡
⎢⎣

�
(3)

1

�
(3)

2

�
(3)

3

⎤
⎥⎦

λ=λ3

. (24)

Performing a similarity transform to decouple the system, we obtain

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣

˙̂v1˙̂v2˙̂v3

⎤
⎦− q

m

⎡
⎢⎣

0 0 0

0 i‖Bext‖ 0

0 0 −i‖Bext‖

⎤
⎥⎦
⎧⎨
⎩

v̂1

v̂2

v̂3

⎫⎬
⎭

= q

m

⎡
⎢⎣

�
(1)

1 �
(2)

1 �
(3)

1

�
(1)

2 �
(2)

2 �
(3)

2

�
(1)

3 �
(2)

3 �
(3)

3

⎤
⎥⎦

−1⎧⎨
⎩

Eext
1

Eext
2

Eext
3

⎫⎬
⎭

def=
⎧⎨
⎩

f̂1

f̂2

f̂3

⎫⎬
⎭ . (25)

The decoupled problems can be written as

˙̂v1 = f̂1, (26)

˙̂v2 − i‖Bext‖v̂2 = f̂2, (27)

˙̂v3 + i‖Bext‖v̂3 = f̂3, (28)

and can be solved individually (decoupled). Afterward, the solution in the transformed space
are transformed back to yield:

⎡
⎢⎣

�
(1)

1 �
(2)

1 �
(3)

1

�
(1)

2 �
(2)

2 �
(3)

2

�
(1)

3 �
(2)

3 �
(3)

3

⎤
⎥⎦
⎧⎨
⎩

v̂1

v̂2

v̂3

⎫⎬
⎭=

⎧⎨
⎩

v1

v2

v3

⎫⎬
⎭ . (29)

Remark On can interpret the preceding analysis as a study of one part of the total influence
on the motion of the lumped charged-masses by considering a decomposition of the forces
governing the dynamics of the lumped-charged-masses into an independent “external” part
and a charged-mass-to-charged-mass “internal” (fabric-interaction) part

qi(E
ext + vi × Bext ) +

N∑
j �=i

� ij

︸ ︷︷ ︸
total

= qi(E
ext + vi × Bext )︸ ︷︷ ︸

external

+
N∑

j �=i

� ij .

︸ ︷︷ ︸
internal−fabric−coupling

(30)



Electromagnetically-induced Deformation of Functionalized Fabric

For fabric-coupled multiple masses undergoing dynamic motion due to combined electro-
magnetic fields, we must employ numerical methods, which we discuss next.

6 Numerical Solution Scheme for Fabric-interacting Lumped Charged-masses

Following Zohdi [46], in order describe the overall time-stepping scheme, we first start with
the dynamics of a single (ith) lumped charged-mass. The equation of motion is given by

mi v̇i = ψ tot
i , (31)

where ψ tot
i is the total force provided from interactions with the external environment (yarn,

electromagnetics, etc.). Employing the trapezoidal-like rule (0 ≤ φ ≤ 1)

r i (t +Δt) = r i (t)+vi (t)Δt + φ(Δt)2

mi

(
φψ tot

i (r i (t + Δt)) + (1 − φ)ψ tot
i (r i (t))

)+Ô(Δt)2,

(32)
where if φ = 1, then (32) becomes the (implicit) Backward Euler scheme, which is very
stable, dissipative and Ô(Δt)2 = O(Δt)2 locally in time, if φ = 0, then (32) becomes the
(explicit) Forward Euler scheme, which is conditionally stable and Ô(Δt)2 = O(Δt)2 lo-
cally in time and if φ = 0.5, then (32) becomes the (implicit) Midpoint scheme, which is
stable and Ô(Δt)2 = O(Δt)3 locally in time.2 Equation (32) can be solved recursively by
recasting the relation as

rL+1,K
i = G(rL+1,K−1

i ) + Ri , (33)

where K = 1,2,3, . . . , is the index of iteration within time step L+1 and Ri is a remainder
term that does not depend on the solution, i.e. Ri �= Ri (r

L+1
1 , rL+1

2 , . . . , rL+1
N ). The conver-

gence of such a scheme is dependent on the behavior of G . Namely, a sufficient condition
for convergence is that G is a contraction mapping for all rL+1,K

i , K = 1,2,3, . . . , In order
to investigate this further, we define the iteration error as

�
L+1,K
i

def= rL+1,K
i − rL+1

i . (34)

A necessary restriction for convergence is iterative self consistency, i.e. the “exact” (dis-
cretized) solution must be represented by the scheme

G(rL+1
i ) + Ri = rL+1

i . (35)

Enforcing this restriction, a sufficient condition for convergence is the existence of a con-
traction mapping

‖ rL+1,K
i − rL+1

i︸ ︷︷ ︸
�

L+1,K
i

‖ = ‖G(rL+1,K−1
i ) − G(rL+1

i )‖ ≤ ηL+1,K‖rL+1,K−1
i − rL+1

i ‖,

2In order to streamline the notation, we drop the cumbersome O(Δt)-type terms.
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where, if 0 ≤ ηL+1,K < 1 for each iteration K , then �
L+1,K
i → 0 for any arbitrary starting

value rL+1,K=0
i , as K → ∞. This type of contraction condition is sufficient, but not neces-

sary, for convergence. Explicitly, the recursion is

rL+1,K
i = rL

i + vL
i Δt + φ(Δt)2

mi

(
(1 − φ)ψ tot,L

i

)
︸ ︷︷ ︸

Ri

+ φ(Δt)2

mi

(
φψ tot,L+1,K−1

i

)
︸ ︷︷ ︸

G(r
L+1,K−1
i

)

, (36)

where

ψ tot,L
i = ψ tot,L

i (rL
1 , rL

2 , . . . , rL
N) (37)

and

ψ tot,L+1,K−1
i = ψ tot,L+1,K−1

i (rL+1,K−1
1 , rL+1,K−1

2 , . . . , rL+1,K−1
N ). (38)

According to (36), convergence is scaled by η ∝ (Δt)2

mi
, and that the contraction constant of

G is (1) directly dependent on the magnitude of the interaction forces, (2) inversely propor-
tional to the lumped masses mi and (3) directly proportional to Δt . Thus, if convergence is
slow within a time step, the time step size, which is adjustable, can be reduced by an ap-
propriate amount to increase the rate of convergence. It is also desirable to simultaneously
maximize the time-step sizes to decrease overall computing time, while obeying an error tol-
erance on the numerical solution’s accuracy. In order to achieve this goal, we follow an ap-
proach found in Zohdi [38–46], originally developed for continuum thermo-chemical multi-
field problems where (1) one approximates ηL+1,K ≈ S(Δt)p (S is a constant) and (2) one as-
sumes that the error within an iteration to behave according to (S(Δt)p)K�L+1,0 = �L+1,K ,
K = 1,2, . . . , where �L+1,0 is the initial norm of the iterative error and S is intrinsic to the
system.3 The objective is to meet an error tolerance in exactly a preset number of iterations.
To this end, one writes (S(Δttol)

p)Kd �L+1,0 = TOL, where TOL is a tolerance and where Kd

is the number of desired iterations.4 If the error tolerance is not met in the desired number
of iterations, the contraction constant ηL+1,K is too large. Accordingly, one can solve for a
new smaller step size, under the assumption that S is constant,

Δttol = Δt

⎛
⎝ ( TOL

�L+1,0 )
1

pKd

(�L+1,K

�L+1,0 )
1

pK

⎞
⎠ . (39)

The assumption that S is constant is not crucial, since the time steps are to be recursively
refined and unrefined throughout the simulation. The expression in (39) can also be used
for time step enlargement, to reduce computational effort, if convergence is met in less than
Kd iterations. Numerous parameter studies of this algorithm can be found in Zohdi [38–46].

3For the class of problems under consideration, due to the quadratic dependency on Δt , p ≈ 2.
4Typically, Kd is chosen to be between five to ten iterations.
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An implementation of the procedure is as follows:

(1) GLOBAL FIXED-POINT ITERATION: (SET i = 1 AND K = 0):
(2) IF i > N THEN GO TO (4) (N = # OF CHARGED-MASSES)
(3) IF i ≤ N THEN:

(a) COMPUTE MASS POSITION: rL+1,K
i

(b) GO TO (2) AND NEXT MASS (i = i + 1)

(4) ERROR MEASURE:

(a) �K
def=

∑N
i=1 ‖rL+1,K

i
−r

L+1,K−1
i

‖∑N
i=1 ‖rL+1,K

i
−rL

i
‖ (normalized)

(b) ZK
def= �K

TOLr

(c) ΦK
def= (

( TOL
�0

)

1
pKd

(
�K
�0

)
1

pK

)

(5) IF TOLERANCE MET (ZK ≤ 1) AND K < Kd THEN:
(a) CONSTRUCT NEW TIME STEP: Δt = ΦKΔt

(b) SELECT MINIMUM: Δt = MIN(Δtlim,Δt)

(c) INCREMENT TIME: t = t + Δt AND GO TO (1)
(6) IF TOLERANCE NOT MET (ZK > 1) AND K = Kd THEN:

(a) CONSTRUCT NEW TIME STEP: Δt = ΦKΔt

(b) RESTART AT TIME = t AND GO TO (1)

(40)

Remark External damping can easily be modeled by adding ci ṙ i in the equations of motion:

mi r̈ i = ψ tot
i︸︷︷︸

total

= ψem
i︸︷︷︸

electromagnetic forces

+
4∑

I=1

ψ
yarn

iI

︸ ︷︷ ︸
surrounding yarn

− ci ṙ i︸︷︷︸
damping

.
(41)

7 A Model Problem

As a model problem, we consider the presence of a magnetic field, Bext = Bext
1 e1. Note

that without an electric field to induce a velocity for the lumped-charges/masses, an initially
stationary functionalized fabric will not deform, since

mi v̇i = vi × Bext = 0. (42)

Furthermore, no deformation would occur for Bext -fields where the initial vi and Bext are
parallel. As a model problem, the following system parameters were used:

− yarn radii = 0.0005 (meters),
− lumped charged-masses: 50 × 50 (a 50 × 50 yarn-network weave),
− lumped mass charge q = 1 (Coloumb),
− external magnetic field Eext = 1.0e3 (Newton/Coulomb), Bext = 0.1e1 (Newton-

second/Coulomb-meter),
− trapezoidal time-stepping parameter φ = 0.5 (mid-point rule),
− area-based density of fabric = 0.15 (kilograms/meter2), leading to lumped masses of

mi = (0.254)2×0.15
(50)2 (kilograms),

− damping coefficient, c = 0.01 (Newton-second/meter),
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Fig. 4 A qualitative initial
velocity profile inducing an
increasingly larger Lorentz force
along the symmetry line

− size of the sheet: 0.254 m × 0.254 (meters) (= 10 in × 10 (inches)),
− average Young’s modulus of a yarn-segment E = 100 (mega-Pascals) (a typical poly-

mer), with a random statistical variation of ±10% from the mean governed by a Gaussian
distribution,

− initial (upper limit) time-step size: Δt = 0.000001 (seconds),
− iterative tolerance per time step: TOL = 0.000001,
− iteration limit per time-step: Kd = 6.

The events connected to the case of having only an electric field present and the case of
having both electric and magnetic fields present, can be observed in Figs. 6 and 7. In the first
simulation, with no magnetic fields, the symmetric deformation is evident.5 In the presence
of a combined electromagnetic field there is a break in “four-quadrant” symmetry due to
the term vi × Bext . Initially, since the fabric is clamped on all four sides, the electric field
(Eext ) will produce a monotonically decreasing velocity profile from the system center point
(Fig. 4). This will result in a larger vi × Bext contribution along the center (symmetry) line,
resulting in a pulse in the middle of the x2-direction (Figs. 4 and 7)

voe3 × Bext
1 e1 = voB

ext
1 e2. (43)

We remark that if the magnetic field had been applied in the other (in-plane) x2-direction,
then

voe3 × Bext
2 e2 = −voB

ext
2 e1. (44)

The long-term dynamics of both simulations (electric field only and combined electric and
magnetic fields) would arrive at the same steady-state response, since the presence of damp-
ing, via the term ci ṙ i in (41) eventually brings the system to a halt and, consequently, for
each charged-mass, vi × Bext = 0. It is also worth noting that the time for the transience
to die down is significantly longer when the magnetic field is present, due to the vi × Bext

term. The simulations take on the order of four to five minutes on a standard laptop and the

5Such a symmetry is not an exact symmetry since, as indicated earlier, the material has a random statistical
variation of ±10% from the mean governed by a Gaussian distribution.
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Fig. 5 Prestressing a segment of
yarn

computational algorithm scales extremely well for much larger fabric systems (see Zohdi
[46] and Zohdi and Powell [41]).

Remark 1 Although we have not included yarn damage in the present formulation, it is now
appropriate to make some remarks on this issue. Generally, the microstructure of the fabric
yarn is composed of microscale fibrils. This is the case with structural fabric materials such
as Zylon, which is a polymeric material produced by the Toyobo Corporation (Toyobo [35]),
Kevlar or other aramid-based materials. These materials have a multiscale structure, for
example, constructed from PBO (Polybenzoxale) microscale fibrils, which are bundled to-
gether to form yarn, which are then tightly woven into sheets. For Zylon, each yarn contains
approximately 350 microfibrils, which are randomly misaligned within the yarn, leading to
a gradual type of failure, since the microfibrils become stretched to different lengths (within
the yarn), when the yarn is in tension. A simple approach to describe failure of a yarn is to
check whether a critical stretch has been attained or exceeded, U(t) ≥ Ucrit , and to track the
progressive damage for a yarn with a single damage (isotropic) variable used in S = αEE ,
where 0 (ruptured) ≤ α ≤ 1(undamaged). The damage variable for each yarn-segment typ-
ically has an evolution law associated with it, which represents progressive stretch-induced
damage.6

Remark 2 The simulation of the actuation of electromagnetically sensitive networks for
more sophisticated, constitutive relations requires only a replacement of the rudimentary
constitutive relation in (3). For example, for networks of biological materials (see Zohdi
[43]), one could use a one-dimensional Fung-like material model (or appropriate variant)
for the yarn-segments (Fung [12]) with stored energy given by W = c(eη − 1), where η =
1
2H E 2, H and c are material constants, and where the second Piola-Kirchhoff stress is given

by S = ∂W
∂E = c

∂η

∂E eη = cH E e
H E 2

2 .

8 Summary and Extensions

This work investigated the deformation of electromagnetically functionalized fabric via a
reduced-order model comprised of an interconnected yarn-segment network combined with

6Multiscale and damage formulations for structural yarn have been explored in detail in Zohdi and Steigmann
[37], Zohdi and Powell [41], Powell and Zohdi [29] and Zohdi [46].
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Fig. 6 Response, with only electric fields: Top to bottom and left to right: sequence of frames of the response
of the fabric. The colors indicate the yarn-segment stretch (U ). The Young’s modulus of the yarn have a
random statistical variation of ±10% from the mean governed by a Gaussian distribution

lumped charged-masses. The fabric deflection is dictated by solving a coupled system of dif-
ferential equations for the motion of the fabric-coupled lumped charged-masses. The effects
of the external electric and magnetic fields were analytically investigated and quantitative
large-scale simulations were provided, based on a computationally-efficient time-stepping
algorithm.

An important topic for further study is to incorporate the effects of prestressing/pre-
stretching the fabric. For example, let us revisit a single yarn-segment unit, and consider the
process depicted in Fig. 5. If we consider a prestretch of 2Δ (two yarn-segments attached),
we see that the final stretched length of the yarn-segment is 2L, where

L =
√

(Lo + Δ)2 + δ2. (45)
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Fig. 7 Response, with both electric and magnetic fields: Top to bottom and left to right: sequence of frames
of the response of the fabric. The colors indicate the yarn-segment stretch (U ). The Young’s modulus of the
yarn have a random statistical variation of ±10% from the mean governed by a Gaussian distribution

Again performing a static equilibrium analysis, for a purely electrical field, we obtain the
following relationship:

qEext = 2PAo

δ

L
= 2USAo

δ

L
= L

Lo

E

(
L2

L2
o

− 1

)
Aoδ = EAoδ

L3
o

(
2ΔLo + Δ2 + δ2

)
. (46)

The cubic equation is of the form,

δ3 + δ (2ΔLo + Δ2)︸ ︷︷ ︸
def= a

− qEextL3
o

EAo︸ ︷︷ ︸
def=−b

= 0. (47)
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This equation has one real root, and two complex conjugate roots. If one solves the cubic
equation for the real root, one obtains

δ =
(

−b

2
+ √

D

) 1
3 +
(

−b

2
− √

D

) 1
3

, (48)

where D = b2

4 + a3

27 . For Δ > 0, the prestretched fabric yarn are stiffer (δ(Δ) < δ(Δ = 0)),
but will reach their rupture stretch more quickly. Precompressing the yarn (producing
“slack”) can lead to a “trampoline” effect, which may be useful in certain applications. The
effects of prestressing electromagnetic fabric is under current investigation by the author.

Finally, we close with some comments on the practical matter of charging the mater-
ial. In this work we considered the charges to be static within the fabric, i.e., they were
not flowing. For example, this type of “static” charge can delivered in the form of an ion-
implantation/bombardment/spray onto the fabric. Furthermore, in some cases, one could
consider materials that can be charged like a battery, provided that they have an inherent
capacitance. An alternative way of delivering charge to the fabric could be achieved by run-
ning live current (J ) through the fabric system. This would lead to forces proportional to
the flowing current crossed with the magnetic field (J ×B). Generally speaking, the current
will depend on the deformation of the fabric, and may also produce an induced electromag-
netic field (computable from the Biot-Savart relation). Without any simplifications, such a
system must be treated by direct simulation of a fully coupled set of equations comprised
of Maxwell’s equations and the balance of momentum, which inevitably leads to non-trivial
issues in numerical discretization and high-performance (large-scale) computing. Further-
more, depending on the type and level of actuation needed, the level of electromagnetism
may induce thermal effects via Joule heating. A detailed account of computational methods
to simulate these effects can be found in Zohdi [47] and is beyond the scope of the cur-
rent paper. The development of reduced-order models that attempt to capture the essential
features of such a electromagnetic delivery system, without resorting to full-scale computa-
tions, are under current investigation by the author.
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