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Estimation of electrical heating load-shares
for sintering of powder mixtures

By T. I. Zoupr*

Department of Mechanical Engineering, University of California,
Berkeley, CA 94720-1740, USA

Rapid, energy-efficient sintering of materials comprised heterogeneous powders is of
critical importance in emerging technologies where traditional manufacturing processes
may be difficult to apply. In particular, electrically aided sintering, which uses the
material’s inherent resistance to flowing current—resulting in Joule heating to bond the
powder components—has great promise because it produces desired materials without
much post-processing. Furthermore, it has advantages over other methods, such as high
purity of processed materials, in particular, because there are few steps during the
approach. In order to electrically process the material properly, one must ascertain
the externally applied field to properly Joule heat the various material components
in the powder mixture. The Joule-heating field is mathematically expressed by the
inner product (J - E) of the current (J) and electric (E) fields throughout the system.
This study develops estimates for the Joule-heating fields carried by each phase in
a powder mixture, using knowledge of only the externally applied current, and the
material properties of the components comprising the mixture. These estimates are
useful in guiding and reducing time-consuming material synthesis involving laboratory
experiments and/or large-scale numerical simulation.

Keywords: sintering; powders; Joule heating

1. Introduction

Generally, sintering refers to processing a compacted powder material, which is
brittle (‘green’), by directly heating it to 70—90% of the melting temperature, for
example, by placing it in a furnace, typically with three chambers: (i) a burn-off
chamber to the vaporize lubricants (used for easy pouring and compaction), (ii) a
high-temperature chamber to sinter, and (iii) a cooling chamber to ramp down the
temperature. The binding occurs by small-scale mechanisms involving diffusion,
plastic flow, recrystallization, grain growth and pore shrinkage.! Sintering has
distinct advantages over other methods, primarily because of the relatively few
number of steps during the overall process (thus retaining the material purity)
and the production of a near final shape of the desired product without much
post-processing. However, because powder processing is typically more expensive
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than other material processing involving full-blown melting, research is ongoing
to improve the steps in the process. In this regard, electrically aided sintering
techniques for heat delivery are promising. The key quantity of interest here is
the amount of heat generated from running a current through a material, denoted
H (a rate), which feeds into the first law of thermodynamics,

pw—T:Vu+V.q= H. (1.1)

Joule-heating source

In equation (1.1), p is the mass density, w is the stored energy per unit mass, T is
the Cauchy stress, u is the displacement field, g is the heat flux and H = a(J - E)
is the rate of electrical energy absorbed owing to Joule heating, where J is
the current, F is the electric field and 0 <a <1 is an absorption constant.
Our objective in this paper is to determine the phase-wise load-shares of the
Joule field, denoted H = J - E, carried by the components in the heterogeneous
powder mixture.

It is important to realize that heterogeneous mixtures (microstructures) distort
the electrical and current field within the material. For electrically aided sintering
to be properly controlled, in particular, for heterogeneous powder mixtures, one
needs accurate characterizations of the electrical loads carried by each of the
phases in the system. In this paper, as a model problem, we will consider a
statistically representative volume element (RVE of volume |Q]) of a two-phase
dielectric medium, as depicted in figure 1. We assume that the material has been
properly compacted so that there are no gaps between the phases (an idealization).
The microscale properties are characterized by a spatially variable electrical
conductivity, a(x). For such a sample, one can decompose the electrical field
carried by each phase in the material as follows:

(E)o= ﬁ (ng EdQ + L)Z Ed.Q) =v(E)g, +v2(E)g,, (1.2)
the current can be decomposed as

(J)Q:ﬁ(JQIJdQ+JQQJdQ>:v1(J)QI+v2(J)92 (1.3)
and the Joule-heating field as

(Hyo = — <J HdQ+J HdQ) = vy (H)g, + va(H)g,, (1.4)
121 \Ug, o

where (-)go déf(l/|Q|)fQ~dQ is a volume averaging operator; v; and v, are
the volume fractions of phases 1 and 2, respectively (v; 4+ vy =1). We denote
vi((H)o,/(H)e) and vo((H)g,/(H)e) as the ‘load-shares’ because

V1 <H>Ql + V9 <H>QQ =1. (15)
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applied
current

Figure 1. A compacted powder with an applied current to help bond the component materials with
Joule heating.

The objective of this paper is to determine the load-shares as functions of known
(a priori) quantities,

H
o <( H);;l — Fi(v1, 01,05, (T)os (B)a) (1.6)

and ()
v2<H—>QQZ = Fo(va, 01,09, (J)o, (E)o), (1.7)

where g, and g9 are the conductivities of phase 1 and phase 2, respectively. The
overall volume averages, (E)g and (J)o, are considered known because they can
be determined by the boundary values from well-known results (discussed in §2):
(i) the Average Electric Field Theorem and (ii) the Average Current Theorem.
The presentation is as follows:

— expressions are developed for the current-field (J) and electric-field (E)
distribution for each component in the mixture;

— expressions are developed for the Joule-heating field current distribution
for each component in the materials (J - E);

— bounding principles are used to provide estimates of the overall response
of the material;

— asymptotic cases of extreme powder mixtures of insulators and super-
conductors are considered;

— simple estimates for the time to heating are provided; and

— extensions, involving numerical methods, are discussed.

Remark 1.1. The mathematical form for Joule heating can be motivated by
taking Faraday’s Law

B
Vx E=—— 1.8
x a7 (1.8)
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and Ampere’s Law

9D
VxH=—"+1J, (1.9)

where D is the electric field flux, H is the magnetic field, B is the magnetic field
flux and forming the difference between the inner product of the electric field with
Ampere’s Law and the inner product of the magnetic field with Faraday’s Law,

D B
E-(VxH)—H-(VxE):E-J-i—E-aa—t+H-aa—t, (1.10)

—V.(ExH)=-V-§ o
=%

where W = %(E D+ H - B) is the electromagnetic energy and S=F x H is

the Poynting vector. This relation can be rewritten as

%—T#—V-S:—J-E. (1.11)

Equation (1.11) is usually referred to as Poynting’s theorem. This can be
interpreted, for simple material laws, where the previous representation for W
holds, as stating that the rate of change of electromagnetic energy within a
volume, plus the energy flowing out through a boundary, is equal to the negative
of the total work performed by the fields on the sources and conduction. This
work is then converted into thermo-mechanical energy (‘Joule heating’, H in
equation (1.1)). Joule heating stems from ions being pulled through a medium
by electromagnetic fields, which generate heat when they collide with their
surroundings.

Remark 1.2. In this work, we assume that the material has been properly
compacted, and we focus solely on the electrical heating aspects of this process.
There has been considerable research activity in non-electrical compaction of
powders, for example, see Brown & Abou-Chedid (1994), Fleck (1995), Tatzel
(1996), Akisanya et al. (1997), Domas (1997), Anand & Gu (2000), Gu et al.
(2001), Gethin et al. (2003), Zohdi (2003a) and Ransing et al. (2004).

Remark 1.3. Generally, for detailed pointwise information, for example,
localized effects in the matrix ligaments between particles (‘hot spots’), one
needs to solve boundary-value problems posed over a statistically RVE sample
of heterogeneous media. This will be discussed at the end of this paper.
However, the essential issue is that time-transient effects lead to coupling
of electrical and magnetic fields, and the only viable approach is to employ
direct numerical techniques to solve for Maxwell’s equations. Generally, these
equations are strongly coupled. Additionally, if the local material properties
are thermally sensitive, and Joule heating is significant, then the first law
of thermodynamics must also be solved, simultaneously. Numerical techniques
for the solution of coupled boundary-value problems posed over heterogeneous
electromagnetic media, undergoing thermo-mechano-chemical effects can be
found in Zohdi (2010).
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2. The controllable quantities: (J)o and (F)go

For our model problem, two physically important test boundary (dQ) loading
states are notable on a sample of heterogeneous material (figure 1): (i) applied
electric fields of the form E|yp = & and (ii) applied current field of the form J|50 =
J, where £ and J are constant electric field and current field vectors, respectively.
Clearly, for these loading states to be satisfied within a macroscopic body under
non-uniform external loading, the sample must be large enough to possess small
boundary field fluctuations relative to its size. Therefore, applying (i)- or (ii)-type
boundary conditions to a large sample is a way of reproducing approximately
what may be occurring in a statistically representative microscopic sample of
material within a macroscopic body. The following two results render (J)o and
(E)o as controllable quantities, via the boundary loading.

— The Average FElectric Field Theorem. Consider a sample with boundary
loading E|s0 = £. We make use of the identity

Vx(Ez)=(VxE)@x+ E -V, (2.1)
E

and substitute this in the definition of the average electric field,

(E)g:LJ'(Vx(E®w)—(VxE)®m)dQ=iJ nx (E®x)dA
=LJ nx(5®zc)dA=i(J (VxE)@mdQ+J E-Vccd.Q).
12 Jag 121 \Jae 90 22

Thus, if Vx E =0, then (E)g =&, when E|yo =¢.
— The Average Current Field Theorem. Consider a sample with boundary
loading J|s0 = J. We make use of the identity

V- (J®z)=(V-J)x+ J -V, (2.3)
J

and substitute this in the definition of the average current,

(Jyo = — L(v-(mm)—(v-J)x)dgziLQn-(J@m)dA

el — 2|
=LJ n-(j@a:)dA:i(J (V-j)@a:d.Q—l—J j-Va:d.Q).
1Q] Jae 121 \Jae 90 o

Thus, if V- J =0, then (J)o =7 when Jlgo=..

Remark 2.1. The importance of the Average Electric Field Theorem and the
Average Current Field Theorem is that we can consider (E)g and (J)o to be
controllable quantities, via £ or J on the boundary. Applying these boundary
conditions should be made with the understanding that these idealizations
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reproduce what a RVE (which is much smaller than the structural component
of intended use) would experience within the system of intended use. Uniform
loading is an idealization and would be present within a vanishingly small
microstructure relative to a finite-sized engineering (macro)structure. These types
of loadings are somewhat standard in computational analyses of samples of
heterogeneous materials (see Zohdi 20036, 2010; Zohdi & Wriggers 2008; Ghosh
2011; Ghosh & Dimiduk 2011).

Remark 2.2. In the analysis that follows, we will use the following energy—
power relation:

(Hlo=(J - E)o=(J)o- (E)e, (2.5)

which is referred to as an ergodicity condition in statistical mechanics (Kréner
1972; Torquato 2002) and as a Hill-type condition in the solid mechanics literature
(Hill 1952). This is essentially a statement that the microenergy (power) must
equal the macroenergy (power). Equation (2.5) is developed by first splitting the
current and electric fields into mean (average) and purely fluctuating (zero mean)

parts. For the current ﬁel~d7 one has~J =(J)o + J, where (J)g =0 and for the
electric field F = (E)g + E, where (E)o = 0. The product yields

((Na+J)-(E)o+ E))o=(T)o- (E)o+ (J - E)g (2.6)

because (j)g =0 and (E)g = 0. The ergodicity assumption is that (j . E)Q — 0,
as the volume |Q|— oo (relative to the inherent length scales in the
microstructure). The implication is that, as the sample becomes infinitely large,

J - E is purely fluctuating and hence (J - F)o =0. In other words, the product
of two purely fluctuating random fields is also purely fluctuating. These results
are consistent with the use of the uniform boundary loadings introduced earlier
because they can be shown to satisfy equation (2.5).

3. Concentration tensors and load-shares

A useful quantity that arises in the analysis of heterogeneous dielectric materials
is the effective conductivity, *, defined via?

(Jle=0"-(E)o, (3.1)

which is the ‘property’ (a relation between volume averages) used in micro—
macroscale analyses. Decomposing the left-hand side yields

(Jle=vi(J)o, +v2(J)0,
=vi01 - (E)g, + v209 - (E)g,
=01 - ((E)g — va(E)g,) + 1202 - (E)g,
= (o1 + v2(02 — a7) - CE,Q)‘<E>Q7 (3.2)

o*

2Implicitly, we assume that (i) the contact between the phases is perfect and (ii) the ergodicity
hypothesis is satisfied (see Kroner (1972) or Torquato (2002)).
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where
(1/v9) (a2 — 1) - (6% — 1)) (E)o = (E)o,. (3.3)
def
=Cg>

Cp2 is known as the electric field concentration tensor. Thus, the product of
Cpa with (E)q yields (E)q,. It is important to realize that once either Cgy or
o are known, the other can be computed.
In order to determine the concentration tensor for phase 1, we have from
equation (1.2)
(B)o —va(E)o, (1 —v3Cpy)-(E)g dc

<E>Ql = = = CEJ . <E)Q, (34)
V1 U1

where
1-v,Cgy

1
CE"lz 1—v
— V2

v—l(]. — Vo CE,?) = (35)

Note that equation (3.5) implies
U1 CE71 + %) CEQ =1. (36)
~—— ~———

phase-1 contribution  phase-2 contribution

Similarly, for the current, we have
(J)o= o (E)o = o (J)o= CEI2 : <E>92 = CE,IQ ) 0'2_1 ’ <J>92' (3'7>
Thus,

;- CE,2'0*71'<J>Q:<J>QQ (3.8)
Cj2
and
Cii-(Jo= (e, (3.9)
where
Cr=t=%Ci_ oo g (3.10)
1—v ’
We remark that equation (3.10) implies
v1C g + v2C ;2 =1 (3.11)
— ——

phase-1 contribution  phase-2 contribution

Summarizing, we have the following results:

1 1—v,C
Cp1-(E)o=(E)g, where Cpi=—(1—1v,Cps)= - R2vE2
U1 1— v
1
Cga- (E)o=(FE)g, where Cpo= v_(0-2 —01)" (6% —a1),
2
1-—v,C
CJ,l N <J>.Q == <J>,Q1, Whel"e CJ,l = lv—zvn :a’l . CE,l . 0'*717
— U2

and CJ,2‘<J>Q=<J>QZ, where CJ’2=0'2' CEQ-G'*_l.

Proc. R. Soc. A


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on March 7, 2012

8 T. I. Zohdi

Remark 3.1. As a consequence of previous results, the Joule fields can be
written in a variety of useful forms,

0<(H)g, & (J)g, -

i

(BE)o,= o7 - (J)o,"(J)o, = 0, (E)g, - (E)q,
in terms of phase averages of J  in terms of phase averages of E
= (Cji-(J)e) (Cg - (E)a)
in terms of overall averages of J and E
=0, (Cyi-(J)a) - (Cy - (J)e)
in terms of overall averages of J
:aZ(CE7<E>Q)(CE7<E>Q) (3.12)

in terms of overall averages of E

4. Joule-heating load-shares

Using equation (3.12), the Joule fields can be bounded as follows (using the
Cauchy—Schwarz inequality):

(H)g,=(Cji-(J)a)  (Cg - (E)o) < CrillllCyill{H)a
(H)o,
(Hyo

If the overall property is isotropic, and each of the constituents is isotropic (for
example, a microstructure comprised of an isotropic binder (fine-scale powder)

embedded with randomly distributed isotropic particles), then we have the
following, Cg ;= Cg;1 where, for a two-phase material,

= [1CEeillllCyill =

(4.1)

1 o09—0* 1o*—o0;
and CEQ:— y
Vg 02 — 0]

(4.2)

and C;;= C;;1, leading to
Cra= £ (02 —7 ) and Cjo= & <U _01). (4.3)

0*(1 —vy) \o3 — 01 o*vy \ 09 — 0]

Thus, in the case of isotropy, equation (4.1) asserts

H H
Cpa1Cra= <(H>)£2 and  CpaCja=> <(H>)f;2' (4.4)

The products of the concentration functions take the following forms:

o1 1 o9 — 0" 2
Cp1Cj1=— 4.5
P T <(1 — v2) <02 —01)) (45)

1 (o — 2
Cp2Cra= a—i <— <a 01)) : (4.6)
ag V2 g9 — 01

and
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Because the concentration functions depend on ¢*, which in turn depends on oy,
09, V2 and the microstructure, we need to employ estimates for ¢*. One class of
estimates are the Hashin—Shtrikman bounds (Hashin & Shtrikman 1962) for two
isotropic materials with an overall isotropic response,

1) < o* <oy + 1-— %)

/(o2 —a1) + (1 — v2)/304 1/(o1 — 032) + v2/305’

g ot

o1+

(4.7)

where the conductivity of phase 2 (with volume fraction v,) is larger than phase 1
(g9 > 01). Provided that the volume fractions and constituent conductivities
are the only known information about the microstructure, the expressions
in equation (4.7) are the tightest bounds for the overall isotropic effective
responses for two-phase media, where the constituents are both isotropic. A
critical observation is that the lower bound is more accurate when the material
is composed of high-conductivity particles that are surrounded by a low-
conductivity matrix (denoted case 1) and the upper bound is more accurate for a
high-conductivity matrix surrounding low-conductivity particles (denoted case 2).

The previous comments on the accuracy of the lower or upper bounds can
be further qualitatively explained by considering the two cases with 50 per cent
low-conductivity material and 50 per cent high-conductivity material. A material
with a continuous low-conductivity (fine-scale powder) binder (50%) will isolate
the high-conductivity particles (50%), and the overall system will not conduct
electricity well (this is case 1 and the lower bound is more accurate), while a
material formed by a continuous high-conductivity (fine-scale powder) binder
(50%) surrounding low-conductivity particles (50%, case 2) will, in an overall
sense, conduct electricity better than case 1. Thus, case 2 is more closely
approximated by the upper bound and case 1 is closer to the lower bound. Because
the true effective property lies between the upper and lower bounds, one can
construct the following approximation:

o~ patt + (1 —¢p)o™, (4.8)
where 0 < ¢ <1. ¢ is an unknown function of the microstructure. However, the

general trends are (i) for cases where the upper bound is more accurate, ¢ > %,

and (ii) for cases when the lower bound is more accurate, ¢ < % Explicitly, for the
product of concentration functions, embedding the effective property estimates,
we have

Cp1Cr1~ (Gt + 61_ ) ((1 —1 vg) (02 . ((ﬁa*;ti_ ¢)a*‘))>(jl.9)

and
N ) 1 ((pa*T+ (1 —¢)o*) — 0y 2
Cp2Cra~ o T A= d)o) (v_2 ( p—— )) . (4.10)

Remark 4.1. There are a vast literature of methods, dating back to Maxwell
(1867, 1873) and Rayleigh (1892), to estimate the overall macroscopic properties
of heterogeneous materials. For an authoritative review of (i) the general theory
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of random heterogeneous media, see Torquato (2002), (ii) for more mathematical
homogenization aspects, see Jikov et al. (1994), (iii) for solid mechanics inclined
accounts of the subject, see Hashin (1983), Mura (1993) and Nemat-Nasser &
Hori (1999), (iv) for analyses of cracked media, see Sevostianov et al. (2001),
and (v) for computational aspects, see Ghosh (2011), Ghosh & Dimiduk (2011)
and Zohdi & Wriggers (2008). Tighter estimates, including generalized N-phase
bounds can be found in Torquato (2002).3

Remark 4.2. The governing equation used in developing effective conductivity
bounds is V- J =0, which stems from taking the divergence of Ampere’s Law:
V.- (Vx H—-09D/dt — J) =0, one obtains, because V- (V x H) =0,

9D 9 oP
V.| — —V D+4+V.J=—+V. 4.11
<at+J> 5 T2 +V-J= VT =0, (4.11)

where P is the charge per unit volume. Thus, if P=0, then V.-J=0. If
one employs the constitutive relation J =6 - E, then this allows for Hashin—
Shtrikman type estimates to be used for the effective conductivity, as does V- D =
0 (which is valid only when P =0) for estimates of the effective permittivity,
(D)o =¢€*"-(FE)q, when D =¢- E. For example, one case when these two physical
situations are compatible is when E=0"!-J=¢! - D= J=(g-¢!)- D.

5. Examples of Joule-heating load-sharing

(a) A general dielectric mizture

Figures 2 and 3 illustrate a surface (using ¢ = 3) in parameter space (01/0, vs)
for the normalized Joule-heating load-share, v;((H)q,/{H)e), of each component,
i=1,2. The plots illustrate the proportion of the Joule heating that will be
delivered to each phase in the system. Directly from equations (4.9) and (4.10),
the load-share quantities of interest are

SRCLILIEN 7 (oa — (gt +(1— ¢>)a*->)2 o)
Yo~ vgo+ (1 @)o ) P ‘
and
v (H)o, A 02 ((¢0*’+ +(1—¢)o*7) - 01)2 (5.2)
*(H)q va(pa*t 4+ (1 — ¢p)a*) Ty — 0, : .

The trends are

— for phase 1: decreasing the volume fraction of phase 2 (v9), for fixed g9/07,
leads to a larger load-share for phase 1, whereas decreasing the mismatch
o9/01, for a fixed vy, leads to an increased load-share for phase 1, for a
fixed volume fraction vs and

3Such N-phase bounds go well beyond the simple Wiener bounds (Wiener 1910), (Zfil 1)7;0'1-_1)*1 <

ot < Zfil V0.
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Figure 2. A load-share surface in parameter space (o9/01,v2) for the normalized Joule heating,
v ((H)g,/(H)@), for phase 1 (using ¢ =1/2). (Online version in colour.)

— for phase 2: increasing the volume fraction of phase 2 (v), for fixed a9/07,
leads to a larger load-share for phase 2, whereas increasing the mismatch
g9/01, for a fixed vy, leads to an extremely slight change in the load-share
of phase 2 (it is virtually flat).

(b) An extreme mixture: high-conductivity ( ‘superconducting’) particles in a
low-conductivity matriz

For the case of high-conductivity particles (phase 2) in a lower conductivity
matrix (phase 1), we have

1« 2%, (5.3)
(281

Inserting this expression into the Hashin—-Shtrikman bounds and taking the limit
as a — 00 yields (o5 tending to infinity)

142 e
01( + vz)dzfalC§0*§oo, (5.4)
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1.000
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0.500
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bound

Figure 3. A load-share surface in parameter space (02/01,v2) for the normalized Joule heating,
vo((H)e,/(H)g), for phase 2 (using ¢ =1/2). (Online version in colour.)

where the lower (Hashin-Shtrikman) bound is more accurate (¢ — 0).
Correspondingly, for the concentration tensors for phase 1 (assuming isotropy),*

1 1 1

C = a,nd C = = 5 5.6
Bl 1-— 2 Ji1 :(1 — vg) 1 + 2U2 ( )
and for phase 2 (particle),
1 1 3
E2 an J,2 s ( C) 1+ 20, ( )

Forming the products yields

1 1
Cp Cr1= (1 — v2) <1 n 2v2) (5.8)

CEQ CJ’Q =0. (5.9)

The expressions are appropriate for small vy (superconducting particles in a
binding matrix). Thus, we have for the load-share

1 (H)o,

and

1+ 2v — . (Hyo’ (5.10)
while for phase 2 (particle superconductor, no Joule field),
SCC (5.11)
(H)o
4These expressions are asymptotically consistent with the identities
v1Cp1+v2Cpo=1 and viCj1+v2C72=1. (5.5)
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Remark 5.1. As vy, — 0 (no particle material; phase 2), the expressions collapse
to restrictions on the pure matrix (here, phase 1) material.

(¢) An extreme mizture: low-conductivity ( ‘insulator’) particles in a
high-conductivity matrix

For the case of low-conductivity particles (phase 1) in a high-conductivity

matrix (phase 2), we have
01 def
I1>—=7. (5.12)
(]
Inserting this expression into the Hashin—Shtrikman bounds and taking the limit
as v — 0 (o7 tending to zero) yield

2
0<0*<a ( e ) &l 2, (5.13)
3 — V2

where the upper (Hashin—Shtrikman) bound is more accurate (¢— 1).
Correspondingly, for the concentration tensors (as y — 0), for phase 1 (particle),

1—2 3
Crni= = d C;1=0 5.14
E.1 - 33—, an J1 ) ( )

and for phase 2 (matrix),

1
CE.Q = —= and C(]72 = —. (5.15)
’ Vo9 3 — Uy V2

The expressions are appropriate for large v, (insulating particles in a binding
matrix),

CEJ 0]71 =0 (5.16)

o= (2) (1) o

Thus, we have for the load-shares, for phase 1 (particle insulator, no Joule field),

and

(H)o,
v 5.18
Y(H)o (5.18)
and for phase 2 (matrix),
2 (H)e,
> . 5.19
3=v - " (H)o (519

Remark 5.2. As vy — 1 (no particle (here, phase 1) material), the expressions
collapse to restrictions on the pure matrix (here, phase 2) material.
6. Conclusions and extensions
Short of large-scale numerical simulations, one can make rough estimates for the
time scales for heating the components materials to reach a target temperature

by ignoring stress—power and conduction in the first law (equation (1.1)). If we
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further assume that the temperature is uniform in each phase with p;uw = p;c;(6),
for each component material (i), we have

which can be integrated to
(0o, = Ot =0))g, + = 22p =5 1= 2O (62)
pei (H)o,
where A0 =6(t) — 6(t =0). Specifically, for a two-phase material,
o 1 oo — "\ \?
CpiCri(H)o= - ( ( = )) (H)o > (H)o, (6.3)
o* \ (1 —vy) \ o2 — gy
and
oy (1 (0" — 0y 2
Cp2Cra(H)o=— (— ( )) (H)o = (H)g, (6.4)
g Vg \02 — 01

yield, with o* ~ ¢o*+ + (1 — ¢)o* ", for phase 1, the time to heat the material to
the desired level ((Af)g,),

f~ pici(Ab)g,
(01/(po*F + (1= ¢)o*7))((1/(1 — v2))((02 — (¢po*F + (1 = §p)o* 7))/ (02 — 01)))2(H>(sé’5)
and for phase 2 ((Af)g,), ‘
fy p2c2(Ab) g, .
(o2/(po*F + (1 = $)a*7))((1/v2)(((po*T + (1 = $p)o*7) — 01) /(02 — 01)))2<H()696)

Clearly, once the design parameter estimates have been made to estimate
the processing time, more detailed information, for example, localized effects
in the matrix ligaments between particles (‘hot spots’), can be generated
via only numerical simulation. To determine the generation of transient
electromagnetic fields, temperature fields, stress fields (owing to both Joule
heating and electromagnetically induced body forces) and chemical fields, this
requires the solution to the time-transient forms of (i) Maxwell’s equations,
(ii) the first law of thermodynamics, (iii) the balance of linear momentum, and
(iv) reaction—diffusion laws. In order to accurately capture the coupled (transient)
electromagnetic, thermal, mechanical and chemical behaviour of a complex
material, Zohdi (2010) addressed the modelling and simulation of such strongly
coupled systems using a staggered temporally adaptive finite difference time
domain (FDTD) method. Of particular interest was to provide a straightforward
modular approach to finding the effective dielectric (electromagnetic) response
of a material, incorporating thermal effects, arising from Joule heating, which
alter the pointwise dielectric properties such as the electric permittivity,
magnetic permeability and electric conductivity. Because multiple field coupling
is present, a staggered, temporally adaptive scheme was developed to resolve the
internal microstructural electric, magnetic and thermal fields, accounting for the
simultaneous pointwise changes in the material properties. This approach also
incorporated the coupled chemical and mechanical fields. We remark that there

Proc. R. Soc. A


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on March 7, 2012

Electrically aided sintering 15

are a variety of computational electromagnetic methods. The most widely used
technique is the FDTD, which is ideally suited to the problems of interest in this
work. However, there are other methods, such as (i) the Multi Resolution Time
Domain Method, which is based on wavelet-based discretization, (ii) the Finite-
Element Method, which is based on discretization of variational formulations and
which is ideal for irregular geometries,” (iii) the Pseudo Spectral Time Domain
Method, which is based on Fourier and Chebyshev transforms, followed by a
lattice or grid discretization of the transformed domain, (iv) the Discrete Dipole
Approzimation, which is based on an array of dipoles solved iteratively with the
conjugate gradient method and a fast Fourier transform to multiply matrices, and
(v) the Method of Moments, which is based on integral formulations employing
boundary-element method discretization, often accompanied by the fast multi-
pole method to accelerate summations needed during the calculations, and (vi) the
Partial Element Equivalent Circuit Method, which is based on integral equations
that are interpreted as circuits in discretization cells.

In Zohdi (2010), FDTD was combined with a staggering solution framework
to solve the coupled dielectric material systems of interest. The general
methodology is as follows (at a given time increment): (i) each field equation
is solved individually, ‘freezing’ the other (coupled) fields in the system, allowing
only the primary field to be active and (ii) after the solution of each field equation,
the primary field variable is updated, and the next field equation is treated in a
similar manner. For an implicit type of staggering, the process can be repeated in
an iterative manner, while for an explicit type, one moves to the next time step
after one ‘pass’ through the system. As the physics changes, the field that is most
sensitive (exhibits the largest amount of relative non-dimensional change) dictates
the time-step size. Because the internal system solvers within the staggering
scheme are also iterative and use the previously converged solution as their
starting value to solve the system of equations, a field that is relatively insensitive
at given stage of the simulation will converge in very few internal iterations
(perhaps even one). The overall goal was to deliver solutions where the staggering
(incomplete coupling) error is controlled and the temporal discretization accuracy
dictates the upper limits on the time-step size. Generally speaking, the staggering
error, which is a function of the time-step size, is time dependent and can become
stronger, weaker or possibly oscillatory, and is extremely difficult to ascertain a
priori as a function of the time-step size. Therefore, to circumvent this problem,
an adaptive staggering strategy was developed to provide accurate solutions by
iteratively adjusting the time steps. Specifically, a sufficient condition for the
convergence of the presented fixed-point scheme was that the spectral radius
(contraction constant of the coupled operator), which depends on the time-step
size, must be less than unity. This observation was used to adaptively control the
time-step sizes while simultaneously controlling the coupled operator’s spectral
radius, in order to deliver solutions below an error tolerance within a prespecified
number of desired iterations. This recursive staggering error control can allow
for substantial reduction of computational effort by the adaptive use of large
time steps, when possible. Furthermore, such a recursive process has a reduced
sensitivity (relative to an explicit staggering approach) to the order in which

SIn particular, see Demkowicz (2006) and Demkowicz et al. (2007) for the state-of-the-art in
adaptive finite-element methods for Maxwell’s equations.
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the individual equations are solved because it is self-correcting. For more details,
see Zohdi (2010). The further development of numerical methods for electrically
aided sintering simulation is under further investigation by the author.

The author expresses his gratitude to Ms Cora Schillig and Mr Gary Merrill of the Siemens
corporation for support of this research.
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