
Growth and remodeling of the left ventricle:
A case study of myocardial infarction and surgical ventricular restoration

Doron Klepacha,b, Lik Chuan Leea,b, Jonathan F. Wenka, Mark B. Ratcliffea, Tarek I. Zohdib, Jose A. Naviac, Ghassan S. Kassabd,
Ellen Kuhle, Julius M. Guccionea,b

aDepartment of Surgery, Division of Adult Cardiothoracic Surgery, UC San Francisco, San Francisco, CA 94121, USA
bDepartments of Mechanical Engineering, UC Berkeley, Berkeley, CA 94720, USA

cDepartments of Thoracic and Cardiovascular Surgery, Biomedical Engineering, Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA
dDepartments of Biomedical Engineering, Surgery, Cellular and Integrative Physiology, Indiana University - Purdue, Indianapolis, IN 46202, USA

eDepartments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
corresponding author, email: ekuhl@stanford.edu, fon: +1.650.450.0855, fax: +1.650.725.1587

Abstract

Cardiac growth and remodeling in the form of chamber dilation and wall thinning are typical hallmarks of infarct-induced heart
failure. Over time, the infarct region stiffens, the remaining muscle takes over function, and the chamber weakens and dilates.
Current therapies seek to attenuate these effects by removing the infarct region or by providing structural support to the ventricular
wall. However, the underlying mechanisms of these therapies are unclear, and the results remain suboptimal. Here we show that
myocardial infarction induces pronounced regional and transmural variations in cardiac form. We introduce a mechanistic growth
model capable of predicting structural alterations in response to mechanical overload. Under a uniform loading, this model predicts
non-uniform growth. Using this model, we simulate growth in a patient-specific left ventricle. We compare two cases, growth in
an infarcted heart, pre-operative, and growth in the same heart, after the infarct was surgically excluded, post-operative. Our results
suggest that removing the infarct and creating a left ventricle with homogeneous mechanical properties does not necessarily reduce
the driving forces for growth and remodeling. These preliminary findings agree conceptually with clinical observations.
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1. Introduction

Heart failure is a chronic medical condition in which the pump-
ing efficiency is gradually reduced as the heart muscle progres-
sively becomes weaker [42]. The single most common cause
of heart failure is ischemic heart disease with acute myocar-
dial infarction. Prognosis is poor with 40% mortality within
12 months of diagnosis, and a 10% annual mortality rate there-
after [8]. To treat heart failure, several innovative procedures
were introduced within the past two decades. Cardiac resyn-
chronization therapy [27], the Dor procedure [10, 47], myos-
plint [18, 34], adjustable passive constraint [25], the injection
of passive material [53, 55], and surgical ventricular restoration
[3, 9, 26], as shown in Figure 1, and are only a few examples.
Most of these procedures were motivated by engineering intu-
ition, but their mechanical characteristics and their long-term
impact were unclear. To quantify the mechanical effects of
these surgical procedures on cardiac function, patient-specific
mathematical models have been proposed to predict strain and
stress profiles throughout the heart [54, 58]. Since it is virtually
impossible to measure regional stresses in the myocardial wall
in vivo, these mathematical modeling seems to be a reasonable
alternative.
To date, most mathematical models focus on characterizing
the acute, short-term impact of surgical procedures [19, 25].
Only recently, novel mathematical models have been proposed

to study the chronic, long-term effects of clinical interventions
[4, 30, 35]. Although the theoretical and computational model-
ing of cardiac growth is still in its infancy, and the calibration
and validation of these models remain challenging [2, 28], the
ultimate goal of these growth models is to provide additional
insight into the driving forces for cardiac growth, and support
the rational design of new treatment options [1, 37, 49].
Clinically, the structural remodeling of the left ventricle is con-
sidered a strong indicator of progressive heart failure [7, 21]. In
response to volume overload, the ventricle dilates to maintain
the cardiac output at its physiological level [56]. Cardiac mal-
adaptation is accompanied by changes in left ventricular shape

pre-operative post-operative

Figure 1: Surgical ventricular restoration after myocardial infarction. Pre-
operative left ventricle with apical infarct, shown in red, and boarder zone,
shown in blue, left. Post-operative left ventricle with the infarct removed, right.
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from prolate elliptical to spherical [29]. These chronic changes
in shape, size, and function of the left ventricle should be ad-
dressed when selecting the appropriate interventional treatment
to ensure not only short-term but also long-term success.
Here, we adopt a recently proposed framework for the con-
stitutive modeling of growth in cardiac tissue [5, 13, 36]. In-
stead of modeling growth by assuming it is an isotropic process
[30, 31, 48], we model ventricular dilation as a natural con-
sequence of the serial deposition of sarcomeres at the cellular
level [12]. The model is thus inherently mechanistic, and cap-
tures the phenomena associated with anisotropic cardiac growth
across the scales. In contrast to existing formulations based on
a generic elliptical model of the left ventricle [2, 30], we utilize
a patient-specific model created from magnetic resonance im-
ages. Finally, rather than assuming uniform material properties
for the myocardial tissue [13, 40], we model a left ventricle di-
agnosed with an apical infarct, and use different material prop-
erties for the infarct region and the remote region, thus adding
an additional source of heterogeneity.
This manuscript is organized as follows. First, in Section 2, we
briefly summarize the modeling of cardiac dilation based on a
mechanistic constitutive model for growth in anisotropic soft
biological tissues. Then, in Section 3, we illustrate the algorith-
mic implementation within an explicit nonlinear finite element
setting. In Section 4, we demonstrate the features of the model
by simulating growth in a patient-specific infarcted left ventri-
cle, first with the infarct in place, than with the infarct surgi-
cally removed. Finally, in Section 5, we summarize the results
and limitations of the proposed approach, and address potential
clinical applications.

2. Continuum modeling of cardiac growth

In this section, we briefly summarize the kinematic equations,
the equilibrium equations, and the constitutive equations of car-
diac growth.

2.1. Kinematics of cardiac growth

In the geometrically exact setting, the key kinematic quantity to
characterize deformation is the deformation gradient, F,

F =
∂χ

∂X
(1)

where χ is the deformation map between the undeformed and
the deformed configuration and ∂χ/∂X denotes its spatial gra-
dient with respect to the undeformed coordinates X. To charac-
terize growth, we multiplicatively decompose F into an elastic
part Fe and a growth part Fg [41],

F = Fe · Fg (2)

This concept, most known in finite elasto-plasticity [39], is
widely used in multi-field modeling such as thermo-elasticity
[33], poro-elasticity [38] and growth [6, 22, 32]. Motivated by
physiological observations, we introduce a single scalar-valued
growth multiplier ϑ, which reflects the longitudinal growth of

individual heart muscle cells through serial sarcomere deposi-
tion [12]. We assume that cardiac dilation is an isochoric pro-
cess characterized through growth along the fiber direction f 0
and simultaneous shrinkage orthogonal to f 0 such that the over-
all tissue volume remains constant [51].

Fg = ϑ f 0 ⊗ f 0 +
1√
ϑ

[I − f 0 ⊗ f 0] (3)

The corresponding Jacobians J = Je Jg follow accordingly with
J = det(F), Je = det(Fe) and, for the case of isochoric growth,
Jg = det(Fg) = 1. With the definition of the growth tensor (3),
we can immediately extract the elastic part of the deformation
gradient Fe = F · Fg − 1, which will be essential to evaluate the
constitutive equations. Accordingly, we introduce the elastic
right Cauchy Green deformation tensor

Ce = Fe t · Fe (4)

and the elastic Green Lagrange strains in terms of the elastic
tensor Fe and the unit tensor I.

Ee =
1
2

[ Fe t · Fe − I ] (5)

Through its rotation into the local fiber-sheet coordinate system
[15, 16], we obtain the strain components in the fiber, cross-
fiber, and sheet plane normal directions Ee

ff
, Ee

ss, Ee
nn, and the

corresponding shear components Ee
fs, Ee

sn, and Ee
fn.

Remark 1. Alternative to equation (3), we could postulate an
isochoric growth tensor in the following form,

Fg = ϑ f 0 ⊗ f 0 +
1
ϑ

s0 ⊗ s0 + n0 ⊗ n0.

for which growth would occur along the fiber direction f 0 and
simultaneous shrinkage would occur along the cross-fiber di-
rection s0. This formulation implies that the microstructure
would remain unaffected along the sheet plane normal n0. This
formulation is based on the concept of myocardial sheets [20],
where the individual muscle fibers are arranged in layers result-
ing in a locally orthotropic material characterization [15, 23].

2.2. Equilibrium equation of cardiac growth
In the absence of external forces, the balance of linear momen-
tum can be expressed as

div(σ) = ρ χ̈, (6)

where div(·) denotes the divergence with respect to the spatial
position x = χ(X, t) and σ is the Cauchy stress. In view of
the computational algorithm we will apply in the sequel, we
have explicitly introduced the acceleration term here, with ρ
denoting the local density and χ̈ denoting the acceleration.

2.3. Constitutive equations of cardiac growth
Leaving aside the effects of active contraction [14, 50], we fo-
cus on the passive part of the constitutive equations here. We
introduce the following strain energy function

ψ = 1
2 C [ exp(bf Ee2

ff + bt(Ee2
ss + Ee2

nn + 2 Ee2
sn )

+bfs(2 Ee2
fs + 2 Ee2

fn )) − 1],
(7)

2



where C, bf , bt, and bfs are diastolic myocardial parameters
[16]. We derive the second Piola stress Se by taking the par-
tial derivative of ψ with respect to the elastic right Cauchy
Green stretch tensor Ce, and take into account the quasi-
incompressibility condition, which applies for most soft bio-
logical tissues [44, 46]. This results in the following expression
[24]

Se = ρ Je Ce − 1 + 2 (Je)−2/3 dev(
∂ψ̃

∂Ce ) (8)

where the dev operator is defined as follows,

dev( ◦ ) = ( ◦ ) − 1
3 (( ◦ ) : Ce) Ce − 1 (9)

and ψ̃ is the isochoric part of the free energy ψ. Using the kine-
matic equation (2), we obtain the total second Piola stress as the
pull back of the elastic stress to the ungrown reference config-
uration

S = Fg − 1 · Se · Fg − t. (10)

The total Cauchy stress σ is calculated by a classical push for-
ward operation

σ =
1
J

F · S · Ft =
1
J

Fe · Se · Fe t. (11)

We introduce a stress-driven evolution equation for cardiac
growth [22]

ϑ̇ = k(ϑ) φ(σ) (12)

in terms of the scaling function k(ϑ) and the growth criterion
φ(σ), where

k =
1
τϑ

[
ϑmax − ϑ
ϑmax − 1

]γ
. (13)

In the above equation, τϑ denotes the adaptation speed, ϑmax

is the maximum sarcomere lengthening, and γ is the degree of
nonlinearity of sarcomere deposition [12, 32]. Following ther-
modynamic considerations [13], we use the following growth
criterion

φ = max
{
tr(J σ) − pcrit, 0

}
(14)

where tr (Jσ) = J σ : I denotes the trace of the Kirchhoff stress.
The difference between tr(Jσ) and the critical growth threshold
pressure pcrit is a physiological over-stress, which we assume
to act as the driving force for growth [22, 40]. Alternatively,
we could introduce cardiac growth as a strain-driven growth
process [12, 13]. Figure 2 illustrates the features of our growth
model for the simple model problem of uniaxial tension.

Remark 2 (Definition of the stress tensor). The definition of
the second Piola stress tensor, S, in equation (10) is a natural
consequence of the multiplicative decomposition of the defor-
mation gradient tensor in equation (2). The stress definition
is in complete analogy to the concept of finite strain plasticity.
It implies, that the stress is attributed exclusively to the elastic
part of the deformation Fe and that cardiac growth Fg does not
produce stress.
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Figure 2: Growth upon uniaxial tension. The stretch is gradually increased from
λ = 1.0 to λ = 2.0, top left. For each new stretch level λ, the stress σ increases
rapidly and then relaxes as the tissue grows, bottom left. Stress relaxation is
caused by a serial deposition of sarcomere units in each cell. The number of
sarcomeres increases from n = 50 to n = 75 as the growth multiplier increases
from the ungrown state at ϑ = 1.0 to the growth limit of ϑ = ϑmax = 1.5, top
right. For each new stretch level λ, the length of the individual sarcomeres in-
creases rapidly and then relaxes as new sarcomeres are deposited, bottom right.

Remark 3 (Evolution of growth). The modeling of growth is
conceptually similar to other types of inelastic behavior, e.g.,
plasticity or damage. The growth criterion φ acts similar to a
yield function, and the critical growth threshold pressure pcrit

is similar to the yield stress. This implies that growth is only
activated if the current pressure p exceeds the critical threshold
level, i.e., p = tr(Jσ) > pcrit. The scaling function k is similar to
a nonlinear hardening function, characterizing the nonlinearity
of the inelastic response.

3. Computational modeling of cardiac growth

While previous growth models were based on implicit compu-
tational algorithms [21, 57], here we illustrate the algorithmic
realization of finite growth within an explicit nonlinear finite
element setting. This will allow us to utilize commercial finite
element packages such as LS-DYNA R©, which are based on ex-
plicit time integration schemes. In particular, we illustrate the
temporal discretization of the growth multiplier ϑ and of the
deformation χ, and summarize the algorithm in an illustrative
flowchart.

3.1. Explicit update of growth multiplier

Our goal is to determine the current growth multiplier ϑ for a
given deformation state Fn, and a given growth multiplier ϑn,
both at the end of the previous time step tn. We introduce the
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Figure 2: Growth upon uniaxial tension. The stretch is gradually increased from
λ = 1.0 to λ = 2.0, top left. For each new stretch level λ, the stress σ increases
rapidly and then relaxes as the tissue grows, bottom left. Stress relaxation is
caused by a serial deposition of sarcomere units in each cell. The number of
sarcomeres increases from n = 50 to n = 75 as the growth multiplier increases
from the ungrown state at ϑ = 1.0 to the growth limit of ϑ = ϑmax = 1.5, top
right. For each new stretch level λ, the length of the individual sarcomeres in-
creases rapidly and then relaxes as new sarcomeres are deposited, bottom right.

Remark 3 (Evolution of growth). The modeling of growth is
conceptually similar to other types of inelastic behavior, e.g.,
plasticity or damage. The growth criterion φ acts similar to a
yield function, and the critical growth threshold pressure pcrit

is similar to the yield stress. This implies that growth is only
activated if the current pressure p exceeds the critical threshold
level, i.e., p = tr(Jσ) > pcrit. The scaling function k is similar to
a nonlinear hardening function, characterizing the nonlinearity
of the inelastic response.

3. Computational modeling of cardiac growth

While previous growth models were based on implicit compu-
tational algorithms [22, 59], here we illustrate the algorithmic
realization of finite growth within an explicit nonlinear finite
element setting. This will allow us to utilize commercial finite
element packages such as LS-DYNA R©, which are based on ex-
plicit time integration schemes. In particular, we illustrate the
temporal discretization of the growth multiplier ϑ and of the
deformation χ, and summarize the algorithm in an illustrative
flowchart.

3.1. Explicit update of growth multiplier

Our goal is to determine the current growth multiplier ϑ for a
given deformation state Fn, and a given growth multiplier ϑn,
both at the end of the previous time step tn. We introduce the
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following finite difference approximation of the first order ma-
terial time derivative,

ϑ̇ =
ϑ − ϑn

∆tn
(15)

where ∆tn = t − tn > 0 denotes the current time increment.
Using explicit time stepping schemes, we now reformulate the
evolution equation (12) with the help of the following finite dif-
ference approximation

ϑ = ϑn +
∆tn
τϑ

[
ϑmax − ϑn

ϑmax − 1

]γ
max
{
tr(Jσ) − pcrit, 0

}
. (16)

3.2. Explicit update of deformation
For the deformation χ, we apply the following finite difference
approximation of the second order time derivative,

χ̈ =
χ

∆t2
n
− χn

∆tn
(

1
∆tn

+
1

∆tn−1
) +

χn−1

∆tn∆tn−1
(17)

where χn and χn−1 are the deformation maps of the previous two
time steps, and ∆tn−1 = tn− tn−1 denotes the last time increment.
We can then reformulate the equilibrium equation (6) using this
finite difference approximation.

χ = (1 +
∆tn

∆tn−1
)χn − ∆tn

∆tn−1
χn−1 + (∆tn)2 1

ρ
div(σn) (18)

3.3. Algorithmic treatment of growth
Table 1 illustrates the algorithmic treatment of stress-driven
transversely isotropic growth.

given Fn and ϑn

calculate growth tensor Fg
n (3)

calculate elastic tensor Fe
n = Fn · Fg − 1

n (2)
calculate elastic Green tensor Ce

n = Fe t
n · Fe

n (4)
calculate elastic second Piola stress Se

n = ∂ψ/∂Ce
n (8)

calculate Cauchy stress σn = 1/Jn Fe
n · Se

n · Fe t
n (11)

growth criterion φ = tr(Jnσn) − pcrit (14)
calculate growth function k(ϑn) (13)
calculate growth multiplier ϑ (16)

calculate deformation χ (18)

Table 1: Computational algorithm for cardiac growth within an explicit finite
element framework

4. Simulation of left ventricular growth

We hypothesize that cardiac growth is heterogeneously dis-
tributed with regional and transmural variations. To test our
hypothesis, we implement our model in a commercial finite ele-
ment program, LS-DYNA R©, and perform a first prototype anal-
ysis. We create a patient-specific model of the left ventricle,
identify its elastic material parameters in an inverse analysis,
and quantify regional and transmural variations of growth. We
compare two cases, growth in an infarcted heart, pre-operative,
and growth in the same heart, after the infarct was surgically
removed, post-operative.

contour outlines

surface mesh volume mesh

Figure 3: Generation of a patient-specific left ventricular geometry. Two-
dimensional magnetic resonance image with contour lines, top, surface rep-
resentation of the endocardium and epicardium, left, and volume mesh of the
left ventricle, right. The finite element mesh consists of 4249 elements, 4296
nodes, and 12888 degrees of freedom for the pre-operative model with distinct
infarct region, shown in red, distinct borderzone, shown in blue, and a remote
region shown in green.

4.1. Patient-specific model of the left ventricle

Figure 3 illustrates the stages of the model generation proce-
dure. Figure 3, top, shows a two-dimensional magnetic res-
onance image of a short axis view with contours of the en-
docardium and epicardium, Figure 3, left, shows the three-
dimensional surfaces representing the left ventricle, and Fig-
ure 3, right, shows the finite element discretization. The mag-
netic resonance images used in this study are based on a patient
with myocardial infarction scanned before and after surgery
[58]. Using image processing software, we contour the left
ventricular endocardium and epicardium and create their three-
dimensional surface models. From these, we create a volumet-
ric finite element discretization, consisting of tri-linear hexa-
hedral elements. Our finite element mesh contains 4249 el-
ements, 4296 nodes, and 12888 degrees of freedom for the
pre-operative case, illustrated in Figure 1, left, and 5100 ele-
ments, 5165 nodes, and 15495 degrees of freedom for the post-
operative case, illustrated in Figure 1, right.

4.2. Model parameters and prescribed loading

Figure 3, right, shows the left ventricle of a patient with an in-
farct in the apex region shown in red, the infarct borderzone
shown in blue, and the remote region shown in green. The pa-
tient underwent magnetic resonance image examinations, one
pre-operative, before surgery was performed, and one post-
operative, after the infarct was excluded. For the pre-operative
model, we assume that only the borderzone and the remote re-
gion are allowed to grow following the constitutive model de-
scribed in Section 2, while the infarct zone itself does not grow.
For the post-operative model, all regions are allowed to grow.
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As illustrated in Figure 4, we prescribe homogeneous Dirich-
let boundary conditions at the base of the left ventricle along
the heart’s long axis. We allow the inner, endocardial nodes to
move freely in the basal plane, while fixing the outer, epicardial
basal nodes in all directions. The inner, endocardial surface is
loaded with a uniform pressure. We increase the pressure lin-
early up to 12 mmHg and then keep it constant to allow the
ventricle to grow.

pre-operative post-operative

pressure
12 mmHg

pressure
12 mmHg

Figure 4: Boundary conditions and loading for pre-operative case, left, and
post-operative case, right. The base of the left ventricle is fixed vertically along
the heart’s long axis. Inner, endocardial basal nodes are allowed to move in
the basal plane. Outer, epicardial basal nodes, are fixed in all directions. The
inner, endocardial surface is loaded with a uniform pressure, which is increased
linearly to 12 mmHg, and then kept constant to allow the ventricle to grow.

We identify the material parameters of the baseline elastic
model by identifying the stiffnesses C in Equation (7) such that
it minimizes the error between the computationally predicted
diastolic left ventricular volume and the volume extracted from
the corresponding magnetic resonance images. The stiffness of
the infarct region CI is set to be ten times stiffer than at the
remote and borderzone region CR [52]. Accordingly, we iden-
tify a stiffness of CR = 0.087 KPa for the remote and border-
zone regions, and CI = 0.87 KPa for the infarct region. For
the anisotropic elastic material parameters introduced in equa-
tion (7), we choose bf = 49.25, bt = 19.25, and bfs = 17.44. We
assign the fiber angles to vary linearly transmurally through the
left ventricular wall. Their range is set from −60◦ to 60◦, from
epicardium to endocardium [17]. For the growth parameters
introduced in equation (12), we choose a maximum sarcomere
lengthening of ϑmax = 1.5, an adaptation speed of τϑ = 10,
a critical growth threshold of pcrit = 10−4 KPa, and a growth
exponent of γ = 2.0. Figure 2 illustrates the growth model
for the set of elastic and growth material parameters introduced
above in the context of uniaxial tension. For the temporal dis-
cretization, we apply an explicit time integration scheme and
divide the time interval of interest T into 1.5×106 time steps of
2/3 × 10−6 T . For the spatial discretization, we apply tri-linear
eight-noded brick elements with full integration.

4.3. Regional and transmural variations of growth
Figure 5, top, shows the spatio-temporal evolution of the
growth multiplier ϑ across the left ventricle for the pre-
operative case. It confirms our hypothesis as it clearly displays
regional variations in growth. Although we apply a uni-
form loading, because of regional thickness variations and a
non-growing infarct, the growth profile displays pronounced

regional heterogeneities. Interestingly, the highest values of
the growth multiplier are located in regions of high curvature,
or rather high changes in curvature.
Figure 5, bottom, shows a cross section of the left ventricle
to illustrate transmural variations in growth. The five snap
shots indicate that in most remote and borderzone regions,
growth is larger in the epiocardium, the outer wall than in
the endocardium, the inner wall. Since we have modeled the
infarct as non-growing tissue, the growth multiplier remains at
its baseline value of ϑ = 1.0 in the apex region.
Figure 6 illustrates the transmural variation of the growth
multiplier ϑ at different depths across the left ventricular wall.
It confirms the observations from Figure 5, bottom. While
the infarct itself does not grow, growth is heterogeneous in
the borderzone and in the remote region. The borderzone has
higher levels of growth in the epicardium, compared to the
remote region. In the endocardium, growth magnitudes are
reversed for both regions.
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Figure 6: Transmural variation of the growth multiplier ϑ at three different
locations, inside the infarct, in the borderzone, and away from the infarct. The
thickness is normalized.

4.4. Comparison of pre-operative and post-operative growth

Finally, we investigate whether surgical ventricular restoration
has a positive impact on cardiac mechanics, as engineering in-
tuition would suggest [3, 26]. We use data of the same patient,
after the infarct was surgically excluded, and perform a com-
putational simulation of growth. All other parameters, loading,
and boundary conditions are similar to the example in the pre-
vious section. The material parameters are identified following
the same procedure described in the previous section, yielding
a homogeneous stiffness of C = 0.105 KPa.
Figure 7, top, documents the spatio-temporal evolution of
the growth multiplier ϑ across the left ventricle for the post-
operative case. In contrast to the pre-operative case, now, the
mechanical properties of the ventricle are set to be homoge-
neous. Surprisingly, even though excluding the infarct region
avoids stress concentrations in and around the boarderzone, the
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pre-operative growth - simulation of growth in response to myocardial infarction

Figure 5: Pre-operative growth. Spatio-temporal evolution of growth across the left ventricle of an infarcted heart. The simulations demonstrate regional variations,
top row, and transmural variations, bottom row, of growth. Snap shots display the gradual increase of growth over time. Blue colors indicates no growth, ϑ = 1.0,
red colors indicate that growth has reached its maximum predefined value, ϑ = ϑmax = 1.5.

simulations display pronounced regional variations of growth.
In agreement with Figure 5, we observe high growth multipli-
ers in regions of high curvature, or more precisely, regions with
high changes in curvature. A typical example is the apical re-
gion where the infarct has been removed and the two boarder
zones are stitched together non-smoothly. The simulation sug-
gests that surgical ventricular restoration successfully removes
constitutive heterogeneities. However, it may at the same time
induce new heterogeneities of kinematic nature, which might
become a trigger for ventricular growth and remodeling.
Figure 7, bottom, displays a cross section of the left ventri-
cle to illustrate transmural heterogeneities of growth for the
post-operative case. The five snap shots indicate that growth
is heterogeneous, and that it initiates at the apex, where the in-
farct was excluded, and the left ventricle was stitched together.
Although these results are just preliminary at this stage, they
might provide additional insight in the long-term success of sur-
gical ventricular restoration.

5. Discussion

Myocardial infarction is the single most common cause of heart
failure. We hypothesized that mechanical non-uniformities
around the infarct region initiate regional variations in cardiac
growth. Our approach was to simulate cardiac growth using
a novel mechanistic growth model, in which the dilation of
the ventricle is characterized through the lengthening of car-
diomyocytes, initiated by the serial deposition of sarcomere
units. Embedded in a finite element simulation environment,
our model proved capable of predicting growth of a patient-
specific left ventricle in response to mechanical overload.

Our model is in excellent agreement with growth phenomena
observed in dilated cardiomyopathies reported in the literature.
In a recent long-term study in infarcted sheep, we have found a
significant chronic fiber lengthening, accompanied by a chronic
radial shortening [51], which agrees nicely with the format of
our growth tensor in equation (3). In freshly isolated cardiac
tissue, compared with a healthy control group, cardiomycytes
from patients with dilated cardiomyopathy were reported to be
40% longer, while the cell widths displayed no statistically sig-
nificant differences [11]. The length of the individual sarcom-
eres, however, was the same in both groups. This is in excel-
lent agreement with the effects captured by our model with a
growth multiplier ϑ increasing from ϑmax = 1.0 to ϑmax = 1.5,
corresponding to a cell cardiomyocyte lengthening of 50%. In
a 16-week long in vivo study in rabbits, the serial sarcomere
number per cardiomyocyte increased chronically from 62 to 95
sarcomere units [57]. This corresponds to a growth multiplier
of ϑ = 1.53, which is in excellent agreement with our model.
The study further suggests that cardiomyocytes are capable to
add one sarcomere per day. However, this initially linear sar-
comere deposition rate decays after approximately four weeks.
In our model, the sarcomere deposition rate is governed by two
parameters, the sarcomere deposition time τ and the sarcomere
deposition nonlinearity γ. Since we were only interested in the
final converged end result of growth, the values of these param-
eters did not play a key role in the present analysis. We are
currently in the process of identifying these parameters using
longitudinal studies reported in the literature [57].
In contrast to existing growth models [12, 13], the proposed
model is based on an explicit time integration scheme, see Ta-
ble 1. This allows us to use explicit commercial codes. In par-
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post-operative growth - simulation of growth in response to infarct removal

Figure 7: Post-operative growth. Spatio-temporal evolution growth of across the left ventricle after surgical ventricular restoration. The simulations demonstrate
regional variations, top row, and transmural variations, bottom row, of growth. Snap shots display the gradual increase of growth over time. Blue colors indicates
no growth, ϑ = 1.0, red colors indicate that growth has reached its maximum predefined value, ϑ = ϑmax = 1.5.

ticular, it enables us to utilize an existing algorithmic infras-
tructure with well-established patient-specific mesh generation
modules [52], passive tissue response modules [16], and pa-
rameter identification modules [46]. We have shown that the
model is portable into a commercially available finite element
code, and that it captures similar phenomena as implicit codes
[12, 13, 40].
The proposed model is an advancement of existing models in
that it was created from patient-specific magnetic resonance im-
ages, rather than from a generic, elliptic geometry with a pre-
defined uniform thickness. This is important, as our results have
shown, since real geometries are not uniform, see Figure 3. It
is this nonuniformity that may trigger the onset of growth as
indicated in Figures 5 and 7.
While existing models assume that the material behavior is uni-
form across the heart [12], we have studied the impact of a
non-uniform material response. This allows us to model growth
not only in the context of dilated cardiomyopathies, where the
heart dilates fairly uniformly, but also in the context of ischemic
cardiomyopathies, where dilation is triggered locally through
an infarcted region, see Figure 5.
Under a uniform loading, our model predicts significant re-
gional and transmural variations in growth. These variations
can be attributed to different wall thicknesses of our patient-
specific model. Previous studies based on idealized elliptic
geometries with uniform wall thicknesses were unable to cap-
ture these characteristics [13, 30]. When examining the post-
operative left ventricle, where the infarcted tissue has been sur-
gically removed and the ventricle was initially expected to dis-
play a more homogeneous state, we still observe significant
regional variations in growth. Specifically, we observe high-

est values of growth near the stitching region where curvature
changes are high, see Figure 6. Our simulation suggests that
surgical ventricular restoration is capable to successfully re-
move constitutive heterogeneities, however, it may at the same
time induce new kinematic heterogeneities, which might turn
into new triggers for ventricular growth and remodeling. The
ability to predict cardiac growth and remodeling might pro-
vide insight into the long-term success of surgical ventricular
restoration. To build confidence in the model, it would be de-
sirable to analyze the surgically removed infarct tissue histolog-
ically, in particular in the borderzone. It would be important to
explore whether the individual cells have truly undergone the
computationally predicted lengthening and thinning [51, 57].
This prototype model is only a very first step towards a better
mechanistic understanding of the chronic phenomena associ-
ated with ventricular growth and remodeling. While many is-
sues remain to be addressed before the model can be used to
reliably predict cardiac dilation and the outcomes of related in-
terventional procedures, we believe that it can already serve as
a useful tool to qualitatively compare different treatment op-
tions. The next logical step would be to further calibrate and
validate the mathematical model. While the calibration of the
elastic baseline parameters is already partly embedded in the
proposed approach, the calibration of the growth parameters
presents a scientific challenge. Human data typically lack a
well-defined starting point and systematic studies of ventricular
growth across the scales are rare. Nevertheless, we think that
computational modeling can provide valuable insight into the
interplay of clinically relevant mechanical fields such as strain,
stress, and growth, which are virtually impossible to measure
in vivo during the chronic progression of heart failure.
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