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Abstract. For composite materials, two quantities that are useful for characteriz-
ing the contribution of inhomogeneities in a matrix material to the overall proper-
ties are (1) the individual H-tensor, H i, which describes the contribution of a single
inhomogeneity and (2) the overall strain concentration tensor, which describes the
relationship between the overall volumetric strain to the average strain of all of the
inhomogeneities. In this paper, we develop a relationship expressing the overall H-
tensor, H, in terms of the overall strain concentration tensor. An important feature
of the derivation is that it allows for rigorous upper and lower bounds on the overall
H-tensor. In the special case that the inhomogeneities are all the same, with the same
orientation, then H = H i, and the results derived for H also hold for H i.
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1 Introduction. A large number of materials consist of a base matrix material con-
taining embedded particulates. Typically, one characterizes effective properties of het-
erogeneous materials by computing a constitutive relation between volume averaged
field variables. The volume averaging takes place over a statistically representative
sample of material, referred to in the literature as a representative volume element
(RVE). The stiffness of a microheterogeneous material is characterized by a spatially
variable elasticity tensor, IE, while the effective stiffness tensor, IE

∗, is defined via

〈σ〉Ω = IE
∗ : 〈ε〉Ω, (1)

where

〈·〉Ω
def
=

1

|Ω|

∫
Ω

· dΩ , (2)

and where σ and ε are the stress and strain tensor fields within a RVE of volume |Ω|.
The literature on this topic is immense, dating back to the early works of Maxwell

[13], [14] and Lord Rayleigh [17]. For an extensive overview of random heterogeneous
media, see Torquato [20] for more mathematical homogenization aspects, Jikov et
al.[8] for more mathematical aspects, for solid-mechanics issues, Hashin [5], Markov
[12], Mura [15], Nemat-Nasser and Hori [16], Huet [6], [7], for analyses of cracked
media, Kachanov [9] and for computational aspects, Zohdi and Wriggers [21] and, re-
cently, Ghosh [1], Ghosh and Dimiduk [2]. Two possible quantities for characterizing
the contribution of the inhomogeneities in a matrix material are (1) H-tensors and
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(2) strain concentration tensors, both of which describe the contribution of inhomo-
geneities in a matrix material to the overall properties. In this paper, we develop
a relation expressing the H-tensor in terms of the strain concentration tensor, the
overall effective property, the properties of the component materials and the volume
fractions. This in turn allows for rigorous bounds on the overall H-tensor, and in
some cases the individual H-tensor.

2 Overall H-tensor. The individual H-tensor, which was originally introduced to
characterize the effective moduli of solids with cavities of various shapes by Kachanov
et al [10], and extended by Kachanov and Sevostianov [11] to general inhomogeneities,
allows for the identification of the strain in a second phase for a single second phase ith

particle (inhomogeneity). In order to determine the individual H-tensor, one performs
the following decomposition

〈ε〉Ω2i
= IE

−1

1
: 〈σ〉Ω + 〈Δε〉Ω2i

, (3)

where the individual H-tensor is defined via

H i : 〈σ〉Ω = 〈Δε〉Ω2i
, (4)

and where 〈ε〉Ω2i
is the average strain in the ith second phase (with domain Ω2i), IE

−1

1

is the compliance of the first (matrix) phase, 〈σ〉Ω is the overall average stress, and
〈Δε〉Ω2i

characterizes the contribution of the ith second phase inhomogeneity to the
average strain in the ith second phase. For an overview of the individual H-tensor,
and its various properties, see Kachanov et al [10], Kachanov and Sevostianov [11]
and Sevostianov et al [18]. In this work, we extend this definition to the entire group
of second phase particles via

〈ε〉Ω2
= IE

−1

1
: 〈σ〉Ω + 〈Δε〉Ω2

, (5)

where 〈ε〉Ω2
is the average strain in all of the second phase material (with domain Ω2)

and where we define overall H-tensor is defined via

H : 〈σ〉Ω = 〈Δε〉Ω2
. (6)

Remark: In the special case the inhomogeneities are all the same, with the same
orientation, then the H i are all the same and

H = H i, (7)

which follows from

|Ω2|H : 〈σ〉Ω = |Ω2|〈Δε〉Ω2
=

N∑
i=1

|Ω2i|〈Δε〉Ω2i
=

N∑
i=1

|Ω2i|H i : 〈σ〉Ω, (8)
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since
∑N

i=1 |Ω2i| = |Ω2|, where |Ω2i| is the volume of the ith inhomogeneity (N in
total), and |Ω2| is the volume of all of the inhomogeneities. In this special case, all of
the results for H that will follow, also hold for H i.

3 Overall strain concentration tensor. Now consider the following identity for
the overall strain

〈ε〉Ω =
1

|Ω|
(

∫
Ω1

ε dΩ +

∫
Ω2

ε dΩ) = v1〈ε〉Ω1
+ v2〈ε〉Ω2

, (9)

where Ω1 can be considered as the domain of the matrix material and, as before, Ω2

can be considered as the domain of all of the particulate material. Furthermore, for
the overall stress

〈σ〉Ω =
1

|Ω|
(

∫
Ω1

σ dΩ +

∫
Ω2

σ dΩ) = v1〈σ〉Ω1
+ v2〈σ〉Ω2

. (10)

Relatively straightforward algebra yields

〈σ〉Ω = v1〈σ〉Ω1
+ v2〈σ〉Ω2

= v1IE1 : 〈ε〉Ω1
+ v2IE2 : 〈ε〉Ω2

= IE1 : (〈ε〉Ω − v2〈ε〉Ω2
) + v2IE2 : 〈ε〉Ω2

= (IE1 + v2(IE2 − IE1) : C) : 〈ε〉Ω (11)

where

(
1

v2

(IE2 − IE1)
−1 : (IE∗ − IE1)

)
︸ ︷︷ ︸

def
= C

: 〈ε〉Ω = 〈ε〉Ω2
. (12)

We refer to C as the overall strain concentration tensor.

4 Relating the overall H-tensor and strain concentration tensor. Taking
Equation 5 and combining it with Equation 6, we have

〈ε〉Ω2
= IE

−1

1
: 〈σ〉Ω + H : 〈σ〉Ω, (13)

and using the definition of the effective property

〈σ〉Ω = IE
∗ : 〈ε〉Ω (14)

yields

〈ε〉Ω2
= IE

−1

1
: 〈σ〉Ω + H : (IE∗ : 〈ε〉Ω) . (15)

Combining Equation 15 with Equation 12

IE
−1

1
: 〈σ〉Ω + H : IE

∗ : (〈ε〉Ω) = C : 〈ε〉Ω, (16)
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which can be solved to yield

H =
(
C : IE

∗−1 − IE
−1

1

)
. (17)

5 Special case of isotropy. In the case of isotropy we may write Equation 5 as

〈tr
ε

3
〉Ω2

=
1

3κ1

〈
trσ

3
〉Ω + 〈

trΔε

3
〉Ω2

, (18)

and

〈ε′〉Ω2
=

1

2μ1

〈σ′〉Ω + 〈Δε
′〉Ω2

, (19)

where ε = trε
3

1 + ε
′, σ = trσ

3
1 + σ

′, and σ = 3κ trε
3

1 + 2με
′. Here we define

Hκ〈
trσ

3
〉Ω = 〈

trΔε

3
〉Ω2

(20)

and

Hμ〈σ
′〉Ω = 〈Δε

′〉Ω2
. (21)

Furthermore, for the overall concentration tensor, we may write

Cκ

def
=

1

v2

κ∗ − κ1

κ2 − κ1
and Cμ

def
=

1

v2

μ∗ − μ1

μ2 − μ1
(22)

where Cκ〈
trε
3
〉Ω = 〈 trε

3
〉Ω2

and Cμ〈ε
′〉Ω = 〈ε′〉Ω2

. In the case of isotropy, and using
the definitions in Equations 20 and 21, we have

Hκ(κ∗)
def
=

1

3κ∗

(
1

v2

κ∗ − κ1

κ2 − κ1
−

κ∗

κ1

)
(23)

and

Hμ(μ∗)
def
=

1

2μ∗

(
1

v2

μ∗ − μ1

μ2 − μ1
−

μ∗

μ1

)
. (24)

6 Bounds on the overall H-tensor and concentration tensors. The two quan-
tities Hκ(κ∗) and Hμ(μ∗) can be bounded by using effective property bounds of the
form (assuming κ2 ≥ κ1 and μ2 ≥ μ1)

κ1 ≤ κ∗,− ≤ κ∗ ≤ κ∗,+ ≤ κ2 (25)

and

μ1 ≤ μ∗,− ≤ μ∗ ≤ μ∗,+ ≤ μ2. (26)

Immediately inserting effective property bounds into Equations 23 and 24, we have
for the H-tensor
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Hκ(κ∗,−) ≤ Hκ(κ∗) ≤ Hκ(κ∗,+) (27)

and

Hμ(μ∗,−) ≤ Hμ(μ∗) ≤ Hμ(μ∗,+). (28)

Similarly, for the overall concentration tensors

Cκ(κ∗,−) ≤ Cκ(κ∗) ≤ Cκ(κ∗,+) (29)

and

Cμ(μ∗,−) ≤ Cμ(μ∗) ≤ Cμ(μ∗,+). (30)

For example, for tangible bounds, consider the widely used Hashin and Shtrikman
bounds ([3],[4]), for isotropic materials with isotropic effective responses; for the bulk
modulus,

κ∗,− def
= κ1 +

v2

1
κ2−κ1

+ 3(1−v2)
3κ1+4μ1

≤ κ∗ ≤ κ2 +
1 − v2

1
κ1−κ2

+ 3v2

3κ2+4μ2

def
= κ∗,+, (31)

and for the shear modulus

μ∗,− def
= μ1 +

v2

1
μ2−μ1

+ 6(1−v2)(κ1+2μ1)
5μ1(3κ1+4μ1)

≤ μ∗ ≤ μ2 +
(1 − v2)

1
μ1−μ2

+ 6v2(κ2+2μ2)
5μ2(3κ2+4μ2)

def
= μ∗,+, (32)

where it is assumed that κ2 ≥ κ1 and μ2 ≥ μ1. Such bounds are considered the
tightest known on isotropic effective responses, with isotropic two phase microstruc-
tures, when the only known data are the volume fractions and phase contrasts of the
constituents.

7 “Dual” Quantities. One can also apply the preceding analysis the “dual” quan-
tity, the so-called individual N-tensor, defined by Sevostianov and Kachanov [19],

N i : 〈ε〉Ω = 〈Δσ〉Ω2i
, (33)

where

〈σ〉Ω2i
= IE1 : 〈ε〉Ω + 〈Δσ〉Ω2i

, (34)

along with the overall N-tensor

N : 〈ε〉Ω = 〈Δσ〉Ω2
, (35)

where

〈σ〉Ω2
= IE1 : 〈ε〉Ω + 〈Δσ〉Ω2

. (36)
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By using the overall stress concentration tensors of the form C : 〈σ〉Ω = 〈σ〉Ω2

(instead of overall strain concentration tensors, see Zohdi and Wriggers [21]), the
analysis proceeds for the N-tensor as in the H-tensor case. Finally, we again highlight
the special case remarked upon earlier in section 2 that, when the particles are all
the same, with the same orientation, all of the results derived for H also hold for H i

and, in a similar manner, for N and N i.
Acknowledgements: The author wishes to thank Prof. Mark Kachanov for his

extremely helpful comments that substantially improved the paper.
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