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1. Introduction

ABSTRACT

This work investigates the deformation of electrified textiles in the presence of an externally supplied
magnetic field (B*"). The electrification is delivered by running current (J) through the fibers from an
external power source. Of primary interest is to ascertain the resulting electromagnetic forces imposed
on the fabric, and the subsequent deformation, due to the terms J x B®* and PE, where P is the charge
density, E is the electric field and the current given by J = o(E + v x B™), where ¢ is the fabric conduc-
tivity, and w» is the fabric velocity. As the fabric deforms, the current changes direction and magnitude,
due to the fact that it flows through the fabric. The charge density is dictated by Gauss’ law, V-D = P,
where D = €E, € is the electrical permittivity and D is the electric field flux. In order to simulate such a
system, one must solve a set of coupled equations governing the charge distribution, current flow and
system dynamics. The deformation of the fabric, as well as the charge distribution and current flow,
are dictated by solving the coupled system of differential equations for the motion of lumped masses,
which are coupled through the fiber-segments under the action of electromagnetically-induced forces
acting on a reduced order network model. In the work, reduced order models are developed for (a) Gauss’
law (V-D =P), (b) the conservation of current/charge, V-J+2% =0, and (c) the system dynamics,
V-T +f = p492 where T is the Cauchy stress and f represents the induced body forces, which are propor-
tional to PE +J x B™. A temporally-adaptive, recursive, staggering scheme is developed to solve this
strongly coupled system of equations. We also consider the effects of progressive fiber damage/rupture
during the deformation process, which leads to changes (reduction) in the electrical conductivity and per-
mittivity throughout the network. Numerical examples are given, as well as extensions to thermal effects,
which are induced by the current-induced Joule-heating.

© 2012 Elsevier B.V. All rights reserved.

the art found in [28,29]. The “functionalization” or “tailoring” of
materials by the addition of fine-scale material is a process that

This work studies the deformation of electromagnetically-sensi-
tive fabric (Figs. 1 and 2), induced by external mechanical, electric
and magnetic fields. There are many applications for such materi-
als, for example electromagnetic actuators, microelectromechani-
cal systems (MEMS) and recently proposed electromagnetic
ballistic fabric shields [58,61], whereby the Lorentz force is har-
nessed to enhance material resistance capabilities beyond purely
mechanical effects, to help impede a high-velocity incoming pro-
jectile. In this analysis, we assume that the fabric can carry a
charge. One way of achieving this is by adding, during fabrication,
highly-conductive fine-scale particles to the usual polymer mate-
rial that comprises most structural fabric. Alternatively, one can
introduce conductive material via particle spray processing
techniques. There are a variety of industrial particle deposition
techniques, and we refer the reader to the surveys of the state of
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has a long history in engineering. The usual approach is to add par-
ticulates that possess a desired property to enhance a base (binder)
material. There exist several methods to predict the resulting effec-
tive properties of materials with embedded particulates dating
back to well over 100 years, for example to Maxwell [30,31] and
Lord Rayleigh [40]. For a thorough analysis of many of such meth-
ods, see [44,23,21,33] for solid-mechanics oriented treatments and
[15,16,56] for computational aspects. For a series of works on con-
tinuum modeling and finite-element simulation of the deformation
of magnetoelastic functionalized membranes and films (for exam-
ple mixtures of iron powder and polydimethylsiloxane), we refer
the reader to recent studies by Barham et al. [4-8]. Applications
for such materials are driven by the extensive sensor, actuator
and MEMS industries. For specific applications, see
[42,41,17,25,26,3,24,32].

The present study investigates the connection between the
electromagnetic loading and fabric actuation, building on the
recent analysis of Zohdi [58,61]. In those works, the charges were
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Fig. 1. A patch of fabric represented by network of woven-fabric by coupled fiber-segments. The fiber-segments are joined together by “pin-joint-like” connectors to form a
network, whereby three sets of equations must be solved for the charge distribution, electric field and system dynamics.
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Fig. 2. A two-dimensional schematic of the deflection of the (lumped mass) fabric
model, for a system that is clamped on both ends under (for example, unspecified,
distributed) vertical loading. For details, on such models, see [47,54,58,48,52,38].
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assumed to be electrostatic, i.e. intrinsically part of the fabric, in
other words, the charges were considered to be static within the
fabric, i.e. not flowing. For example, this type of “static” charge
could be delivered in the form of an ion-implantation/bombard-
ment/spray onto the fabric or, in some cases, one could consider
materials that can be charged like a battery, provided that they
have an inherent capacitance. However, in order to achieve much
larger electric fields, a more robust, powerful and practical ap-
proach, is to run live current through the fabric system. This intro-
duces a level of multifield complexity, both in terms of the
modeling and simulation. This is the focus of the analysis in this
paper.

The present work investigates the deformation of electrified tex-
tiles in the presence of an externally supplied magnetic field (B*").
The electrification is delivered by running current (J) through the
fibers from an external power source. Of primary interest is to
ascertain the resulting electromagnetic forces imposed on the fab-
ric, and the subsequent deformation, due to the terms J x B®* and
‘PE, where P is the charge density, E is the electric field and the
current given by J = o(E + v x B™), where ¢ is the fabric conduc-
tivity, and v is the fabric velocity. As the fabric deforms, the current
changes direction and magnitude, due to the fact that it flows
through the fabric. The charge density is dictated by Gauss’ law,
V -D =P, where D = ¢E, € is the electrical permittivity and D is
the electric field flux. In order to simulate such a system, one must
solve a set of coupled equations governing the charge distribution,
current flow and system dynamics. The deformation of the fabric, as
well as the charge distribution and current flow, are dictated by
solving the coupled system of differential equations for the motion
of lumped masses, which are coupled through the fiber-segments
under the action of electromagnetically-induced forces acting on
a reduced order network model.

Without any simplifications, such a system must be treated by
direct continuum simulation of a fully coupled set of equations
comprised of Maxwell’s equations and the balance of momentum,
which inevitably leads to non-trivial issues in numerical discretiza-
tion and high-performance (large-scale) computing. Furthermore,
depending on the type and level of actuation needed, the level of
electromagnetism may induce thermal effects via Joule heating. A
detailed account of full-blown continuum-based computational
methods to simulate these effects can be found in [59] which em-
ployed the Finite Difference Time Domain Method (FDTD) and is
beyond the scope of the current paper.! The development of re-
duced-order models that attempt to capture the essential features
of such an electromagnetic delivery system, without resorting to
full-scale, continuum, Maxwell-type, computations, is the subject
of the present work. Specifically, reduced order models are
developed for (a) Gauss’ law (V -D = P), (b) the conservation of
current/charge, V-J+2 =0, and (c) the system dynamics,
V-T+f = pd, where T is the Cauchy stress and f represents the
induced body forces, which are proportional to PE +J x B™. A
temporally-adaptive, recursive, staggering scheme is developed to
solve this strongly coupled system of equations.

2. Fabric dynamics

The dynamics of the lumped charged-masses are given by

4 b
2
———

surrounding fiber
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‘Pi
~—~
electromagnetic forces

mj.f',‘ = ‘l‘fut = (21)
~~

total

where i =1,2,...,N, where N is the number of lumped charged-
masses, W;" represents the electromagnetic contribution, ‘l‘ffb”
represents the contributions of the four fibers intersecting at
charged-mass i (Fig. 1) and m; is the mass of a single lumped
charged-mass (the total fabric mass divided by the total number
of charged-masses). The forces from the Ith surrounding fiber-
segment (there are four of them for the type of rectangular weaving
pattern considered) acting on the ith lumped charged-mass is ‘l’ﬁb”
Clearly, ‘l’ﬁ”er is a function of the charged-mass positions (r;), Wthh
are all coupled together, leading to a system of equations. In order
to solve the resulting coupled system, we develop an iterative
solution scheme later in the presentation.

! The primary alternative to FDTD is the Finite Element Method for electromag-
netics. In particular, see [13,14] for the state of the art in adaptive Finite Element
Methods for electromagnetics.
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3. Fiber-segment network representation for mechanical forces

For the mechanical portion of the modeling of the fabric, we as-
sume that: (1) the fiber-segments are quite thin, experiencing a
uniaxial-stress condition, whereby the forces only act along the
length of the fiber-segments, (2) the fiber-segments remain
straight, undergoing a homogeneous (axial) stress state, (3) the
compressive response of a fiber-segment is insignificant (relative
to tensile states) and (4) fiber-segment buckling phenomena is ig-
nored. We write one-dimensional constitutive laws in terms of the
Piola-Kirchhoff stresses (mimicking 3-D approaches), defined by

force on referential area

b= referential area 3.1)

and then transform the result to the second Piola-Kirchhoff stress
via P = US, where U = ﬁ is the stretch ratio, L is the deformed length
of the fiber-segment, L, is its original length and where we note that
for a relaxed model, when U < 1 (compression), we enforce P = 0. A
standard constitutive relation S = #(U) is then employed, with the
primary objective being to extract the force carried in the fiber-seg-
ment (W), which is needed later for the dynamics of the lumped
charged-masses. Specifically,
P= ‘pﬁber ber — USA, Lsa
A L
We shall adopt a simple one-dimensional model for the stored en-
ergy, W = 1E€%, where E is Young's modulus and g LW -1)is
the Green-Lagrange strain, with the second Piola-Kirchhoff stress
given by 2% = S = E€. Thus, for the fiber-segment,

fiber 2
P= ‘/’A = ‘b":USAf SA 72LL [E<<L£> —1)A0. (3.3)

(3.2)

Remark 1. As aresult of the previous analysis, ‘l’f"’er UiSiAqay, (Ao
is the undeformed cross-sectional area pf the ﬁber) where the unit
axial fiber direction is given by a;, = m, where r]” denotes the
position vector of the endpoint connected to the lumped charged-
mass and r; denotes the endpoint that is connected to it

neighboring charged-mass (Fig. 1).2

Remark 2. Assumption (3) the previous section is the adoption of
a relaxed-type model, whereby a zero stress state is enforced for a
compressive state. Relaxed models have a long history, and we refer
the reader to works dating back to [36,9,34,10,35,11,12,43,18-
20,1,2]. Relaxed formulations have served as a foundation for com-
putational models describing rupture of ballistic fabric shielding in
[47,54,58,48,52,38] and are the basis for the present approach.

Remark 3. Consistent with the assumed one-dimensional defor-
mation of the fiber-segments, we have the following relations,
between the deformed and undeformed states for the fiber-seg-
ment length (Uj(t) = ;1%;), cross-sectional area and volume:

)
Vi(t) Al(DLi(t)
Vi(t=0)

TA(=0L(t=0) 16,
which renders V,(t) = V,(t = 0)U(t) and A(t) = A/(t = 0) (the cross-
sectional area remains constant). For other alternative possibilities
for one-dimensional reduced-order model behavior see [48].

(3.4)

2 | -| indicates the Euclidean norm in R>.

Remark 4. Further comments on the specific material develop-
ment related to the computational model in this paper are included
in Appendix A.

4. Modeling of current flow
4.1. Network model simplification

To describe the electromagnetic behavior of the network model,
recall Gauss’ law in integral form (posed over an arbitrary domain

/ D-ndA:/PdV,
ow 0]

where D is the electrical field flux, P is the dynamic charge per unit
volume. Similarly, for the conservation of charge in integral form

(4.1)

Jonda+ [ Pav—o,

ow 9] ot

(4.2)

where J is the current field. During the electromagnetic modeling,
we assume that the electromagnetic fields have evolved to steady
state on time-scales that are much shorter than the dynamics of
the fabric. Therefore, 22 = 0 is assumed throughout the remainder
of this work, thus

J-ndA=0.

ow

(4.3)

Some further comments on this assumption appear in Appendix B.
For a reduced-order network model, we re-express Eqs. (4.1) and
(4.3) in terms of one-dimensional electrical flow (through the
fiber-segments), characterized by fluxes in and out of nodes.
Accordingly, Eq. (4.1) can be expressed as

> Dy, -mAi =PV (4.4)
1

and Eq. (4.3) as

>, -mAi =0, (4.5)

1

where V; is the volume associated with the node (half of each of the
surrounding segments), and A; is the cross-sectional area associated
with each surrounding segment where the P; are the lumped values
from the surrounding fiber-segments, and the D, is the electrical
field flux in segment I associated with node i, with the following
constitutive law

D’i = GI,EI” (46)

where E|, is the electrical field in segment I associated with node i,
€, is the electrical permittivity, and the current is
J, = oy (B, + v, < B)"), (4.7)
where, for segment I associated with node i, gy, is the electrical con-
ductivity, »;; is the velocity, BZXt externally controlled magnetic
field. We assume that each segment has a one-dimensional
E — D —] field along its axis, for example, E; = Et;, D, = Dt; and
J; =Jt;, where t; is the tangent to the segment, which will change
due to the deformation of the fabric.> Furthermore, on the segment
level, we assume that the field quantities are uniform in magnitude
in a segment, although they may change value from segment to seg-
ment. Since B*' is multidimensional and is externally controlled, it
has components that are not along the axis of the fiber-segments.
Furthermore, the segment velocity has components that are not

3 Since the segments are assumed to be straight, t; is along the Ith segment.
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Fig. 3. Summing the horizontal and vertical flux contributions intersecting at a
node and overlaying to obtain nodal quantities.

along the axis of the fiber-segments. However, the (product) quantity,
bfv, x B, in J, = 0,,(E;, + v, x B ), is projected onto the corre-
sponding segment’s tangent. Explicitly (the term on the left should
be interpreted as the term on the right),

x BX) < gy, (Ey, - t, + (v, x B™) - t)ty.

6’1’ (Eli + v,i (48)

Remark 1: The electromagnetic force induced on a segment |
associated with node i is
FI[ = (P’iEli +-”,' X B;’ixr) V’i‘ (49)
The force experienced by the node i surrounded by the four seg-
ments is computed by taking the shares of the surrounding seg-

ments (half a segment from each side), 1 F,
Remark 2: The charge in each segment is approximated as the

average at the nodal endpoints P;, =
segment is approximated as the average at the nodal endpoints

e
of the segment, »;, ~ %"

4.2. Flux summation at nodes

We now provide details on the flux summation dictated by Egs.
4.4 and 4.5. Referring to Fig. 3 (and Fig. 1), we assume that there is
no charge transfer between the initially orthogonal networks of fi-
ber-segments, although they are mechanically joined. This
assumption allows the independent flux summation at a node in
each fiber direction, which can then be added together to deter-
mine nodel quantities. In the initially horizontal (H) direction, we
have (Gauss’ Law)*

PV = DAl — DAl (4.10)
where Df” is the flux of the fiber-segment to the right of the node,
A is the cross-sectional area to the right of the node, D"~ is the
flux of the fiber-segment to the left of the node, A"~ is the cross-
sectional area to the left of the node and V! is the average volume
of the two segments. In the initially vertical (V) direction we have
PYV] =D{"A!"* —D!"A]", (4.11)
where D! is the flux of the fiber-segment above the node, A}"* is
the cross-sectional area above the node, D}~ is the flux of the
fiber-segment below the node, A"~ is the cross-sectional area below
the node and V) is the average volume of the two segments. Note
that the volumes and areas change with the deformation of the
body (as indicated previously), governed by the local one-dimen-
sional deformation gradient. Adding the two previous equations to-
gether yields an expression for the conjoined system:

4 The nomenclature of “initially horizontal” and “initially vertical” is used since
after the fabric deforms the fibers are neither horizontal nor vertical, nor mutually
orthogonal.

prv L pHyH | pryY _ plialit _ piopfte | pleaVs _ ploals

(4.12)
where V; =V + VY, and P; is the effective charge at a (cross-

linked) node The same holds for the current (from the conservation
law), namely, in the initially horizontal direction, we have

JA Al =0 (4.13)
and in the initially vertical direction
SR I A =0 414

4.3. Solution process

The preceding relations lead to an implicit set of equations
which are strongly coupled, as well as being coupled to the system
dynamics via the term » x B* and Eq. (2.1). In order to deal with
system, we employ a staggering scheme where, broadly speaking,
the solution method sweeps through the system, node by node,
and segment by segment, updating the variables as it progresses.
Specifically (where K is an iteration counter and B** is considered
fixed (externally controlled)),

1. Determine DK from Eq. (4.6), segment by segment. Explicitly, for
each segment I; surrounding node i determine Dy = ¢,Ej.

2. Determme], from Eq. (4.7), segment by segment. Exp11c1tly, for
each segment I; surrounding node i, determine ], =0y

EK + vf x Be’“ Note that the presence of the fabric veloczty v,
and the ( movmg) fiber-segment tangents t couples this equation
to the dynamics of the system, represented by Eq. (2.1). The overall
algorithm, coupling the two types of physics will be discussed
momentarily.

3. From Eq. (4.12), solve for P;**", with the J and E] fixed, where
during the individual nodal i update, all other nodal and seg-
mental values are fixed. Explicitly, for the nodes, one solves
for the effective charge via

K
Pt = ( ! (D” Al - DA + DAY - D}’"A}’“))

1 V‘
(4.15)
and for Ej, from Eq. (4.13), we have
JETAR — JAR =0 = (0(E+ v x B)"T A"
N——
o
— (6(E+ v x B))" A"~ (4.16)
D Y ————
]H.—
and Eq. (4.14)
JIAlT —J Al =0= (a(E+ v xB)"" A"
e e ———
o
—(c(E+vxB)" A", (4.17)
R e e —
]V.f
which can be written
K
EF1Ve = fwa (G(E+vxB)" A" —(vxB)""| .
evaluated at K th iteration
(4.18)

4. This process is repeated and updated for all of the nodes and
segments.
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5. The dynamics equation (Eq. (2.1)) is then solved for the motion
of the nodes, freezing the electromagnetic variables, using the
Lorentz force for each segment (see comments associated with
Eq. (4.9)):

4
\P(i?m,KJrl — Z%Ff+] (419)
I=1

Afterwards, the current field is updated, segment by segment

EH —a, (Efﬂ + v;fﬂ « B,eixt) (4.20)

and the entire procedure (all previous steps) is repeated.

For related, detailed, electrostatically charged-mass interaction
formulations and simulation techniques, we refer the reader to
[49-60].

5. Damage evolution in a fiber-segment network

Until this point, we have not included fiber damage in the for-
mulation. Generally, the microstructure of the fabric fibers is com-
posed of several microscale fibrils. For example, fabric materials
such as Zylon, which is a polymeric material produced by the Toy-
obo Corporation [45], Kevlar and other aramid-based materials
have a microstructure comprised of bundles of microscale “micro-
fibrils” forming the fibers, which is then tightly woven into sheets.
For Zylon, each fiber contains approximately 350 microfibrils,
which are randomly misaligned within the fiber, leading to a grad-
ual type of failure, since the microfibrils become stretched to dif-
ferent lengths (within the fiber), when the fiber is in tension. A
simple approach [52] to describe failure of a fiber is to check
whether a critical stretch (for a fiber-segment) has been attained
or exceeded, U(t) > Uy, and to track the progressive damage with
a single damage (isotropic) variable, o, used in S = oEE, where
0 < o < 1. The damage variable for each fiber-segment typically
has an evolution law associated with it, which represents progres-
sive stretch-induced damage.” Specifically, for a fiber that is undam-
aged, o = 1, while for a fiber that is completely damaged, o = 0. For
illustration purposes, for example, we adopt the damage representa-
tion of [52]

. (- (L ity
oy =min\| o < <t),e crit , .
(t) ( o<t <) U ) (5.1)

where o;(U(t = 0)) = 1, U(t) is the stretch of the fiber-segment I at
time t, and where 0 < /1 is a damage decay parameter. The above
relation indicates that damage is irreversible, i.e. ¢; is a monotoni-
cally decreasing function. As A — oo, the type of failure tends to-
wards sudden rupture, while as 4 — 0, then there is no damage
generated. The progressive damage of fibers can be written for
the material constants as, for the Young’s modulus,

E(t) = aE(t,) (5.2)
and for the conductivity
o(t) = oo(t,) (5.3)
and for the permittivity
€(t) = (€(tp) — € )or + € (5.4)

where €* is the free-space permittivity. Note that as « — 0, the
physical trends are E(t) — 0, o(t) — 0 and €(t) — €*. The damage
variable is relatively easy to track during the staggering scheme.

5 Multiscale and damage formulations for structural fibers have been explored in
detail in [48,52,38,58].

For detailed analysis of damage in materials at the microscale, we
refer the reader to [15,16].

6. Overall numerical solution scheme

In order describe the overall time-stepping scheme, we first
start with the dynamics of a single (i)th lumped charged-mass

(Eq. (2.1)).
6.1. Adaptive time-stepping scheme

Following Zohdi [49-58], employing a trapezoidal-like rule
(0 < ¢ < 1), we have

Vi(f + Af) — vi(t)

A = ¥t + pAL) (6.1)

and

t+At

vi(t + At) = vi(t) + p— witdt

1 Jt

— B+ 80 + (1 - ¥ (D), 62)

The position can be computed via by applying the mid-point rule
again, yielding

2
ri(t + At) = ri(t) + v;(t) At + @ (d>‘l'§‘"(r,-(t + At))
+(1 - ¢)¥I(ri(t))) + O(AL)?, (6.3)

where if ¢ = 1, then Eq. (6.3) becomes the (implicit) Backward Euler
scheme, which is very stable, dissipative and O(At)* = O(At)? lo-
cally in time, if ¢ = 0, then Eq. (6.3) becomes the (explicit) Forward
Euler scheme, which is conditionally stable and O(At)? = O(At)? lo-
cally in time and if ¢ = 0.5, then Eq. (6.3) becomes the (implicit)
Midpoint scheme, which is stable and O(At)* = O(At)® locally in
time.® Eq. (6.3) can be solved recursively by recasting the relation as

riLJr]_K _ g('.{jﬁ»l‘l(—l) _,’_7?,1‘7 (64)

where K = 1,2,3,... is the index of iteration within time step L + 1
and R; is a remainder term that does not depend on the solution, i.e.
Ri # Ri(ri™, ri1 .. rk"). The convergence of such a scheme is
dependent on the behavior of G. Namely, a sufficient condition for
convergence is that G is a contraction mapping for all
rit K=1,2,3... In order to investigate this further, we define
the iteration error as "X & pb+1K _pl+1 A necessary restriction
for convergence is iterative self consistency, i.e. the “exact” (discret-
ized) solution must be represented by the scheme

gri) + Ri =11, (6.5)

Enforcing this restriction, a sufficient condition for convergence is
the existence of a contraction mapping

H r:_+1.1( _ riL+1 H _ ||g(riL+1.K—1) _ g(rlLJrl)” < ;,IL+1.KHriL+1.K—1 _ r%+1||7
|
ml_.+1.K
(6.6)

where, if 0 < #"*'X < 1 for each iteration K, then @!""* — 0 for any

arbitrary starting value r7'%=°, as K — oc. This type of contraction
condition is sufficient, but not necessary, for convergence.
Explicitly, the recursion is

5 In order to streamline the notation, we drop the cumbersome O(At)-type terms.
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P el AL d(A)? ((1 - ¢)‘P§o[,L) +M <¢\P;OLL+1,K—1>7

m; m;
Ri g
(6.7)

where

tot,L tOt,L (0l 4l L
WO =W (s L) (6.8)
and

tot L+1,K-1 tot L+1,K-1 L+1.K-1 +1K-1 +1,K-1
! — ¥ (P e e, (6.9)

The overall objective is to simultaneously maximize the time-step
sizes to decrease overall computing time, while obeying an error

the contraction constant #**1X is too large. Accordingly, one can
solve for a new smaller step size, under the assumption that S is
constant

1
pe e[
tol = (mLﬁ»l.K)‘# ’
w@l+10

Remarks: Numerous parameter studies using Eq. (6.10) can be
found in [49-58]. The assumption that S is constant is not crucial,
since the time steps are to be recursively refined and unrefined
throughout the simulation.

(6.10)

6.2. Algorithm

An implementation of the procedure is as follows:

(2)IF i > N THEN GO TO (4)
(3)IF i < N THEN :

() COMPUTE NETWORK DAMAGE :af ™%
(d) GO TO (2) AND NEXT MASS (i=1i+1)
(4) ERROR MEASURE :
dof Dogy |l THE — e

(5)IF TOLERANCE MET (Zx < 1) AND K < K4 THEN :
(a) INCREMENT TIME : ¢t =t + At

(1) GLOBAL FIXED — POINT ITERATION : (INITIALLY SET i=1AND K =0):
(N = # OF CHARGED — MASSES)

(a) COMPUTE ELECTROMAGNETIC FIELDS :P; "5 g+t K AND Ef 05
b) COMPUTE CHARGED — MASS VELOCITY AND POSITION :pZt15 pL+LK
(b) ; T

(a)wk = (normalized)
I > ]
(b)Zr =
TOL,
1
TOLN\PK
def ( w )p d
(C)QK = 0 1
(?IO()”K

(b) CONSTRUCT NEW TIME STEP : (At)™*" = &k (A1),
(¢) SELECT MINIMUM : At = MIN(At"™, (At)™*) AND GO TO (1)
(6)IF TOLERANCE NOT MET (Zx > 1) AND K < K4 THEN :

(a) UPDATE ITERATION K=K + 1
() RESET PARTICLE COUNTER i =1
(¢) GO TO (2)

(7)IF TOLERANCE NOT MET (Zx > 1) AND K = K, THEN :

(a) CONSTRUCT NEW TIME STEP :At = ® At
(b)) RESTART AT TIME = ¢t AND GO TO (1)

tolerance on the numerical solution’s accuracy.” In order to achieve
this goal, we follow an approach found in Zohdi [49-58], originally
developed for continuum thermo-chemical multifield problems
where (1) one approximates nt*1X ~ S(At)P (S is a constant) and
(2) one assumes that the error within an iteration to behave accord-
ing to (S(AHP¥@l+10 = @l 1K K =1,2,.. ., where @19 is the initial
norm of the iterative error and S is intrinsic to the system.® The
objective is to meet an error tolerance in exactly a preset number
of iterations. To this end, one writes (S(Aty)?)“@ 10 = TOL, where
TOL is a tolerance and where K, is the number of desired iterations.®
If the error tolerance is not met in the desired number of iterations,

7 According to Eq. (6.7), convergence is scaled by 77 %, and that the contraction
constant of G(¥) is (1) directly dependent on the magnitude of the interaction forces,
(2) inversely proportional to the lumped masses m; and (3) directly proportional to
At. Thus, if convergence is slow within a time step, the time step size, which is
adjustable, can be reduced by an appropriate amount to increase the rate of
convergence.

8 For the class of problems under consideration, due to the quadratic dependency
on At,p =~ 2.

9 Typically, Ky is chosen to be between five to ten iterations.

(6.11)

Remark 1: The expression in Eq. (6.10) can also be used for time
step enlargement (to reduce computational effort) if convergence
is met in less than K, iterations.

Remark 2: External damping (for example from the environ-
ment) can easily be incorporated by adding c;r; in the equations
of motion:

.. 4 .
mir; = ‘l’lmt = \me + E \beer ELE (6 1 2)
~~ ~— &= ~
total electromagnetic forces surrounding fiber damping

7. Numerical examples: model problems with bidirectional
current

As a model problem, we consider the presence of:
e a static magnetic field, B** = BSe;, + B5“e; and

e an electric field pumped (controlled) in the e; and e, directions
on the boundary (Fig. 4).
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Fig. 4. Electricity (“pumped”) controlled in the e; and e, directions on the boundary
on the fiber network.

The following system parameters were used:

e external magnetic field: B = —1,B5“ =1 (Newton-second/
Coulomb-meter),

e boundary values: E; =E,=10% E, =E,=10* (Newton/
Coulomb),

size of the sheet: 0.254 m x 0.254 (m) (=10 in x 10 (in)),
nominal fiber radii = 0.0005 (m),

lumped charged-masses: 50 x 50 (a 50 x 50 fiber network
weave),

area-based density of fabric = 0.15 (kilograms/meter?), leading
to lumped masses of m; = ©254°x015 (kiloerams),

average Young’'s modulus of a fiber-segment E = 100 (mega-
Pascals) (a typical polymer), with a random statistical variation
of +10% from the mean governed by a Gaussian distribution,
damping coefficient, ¢ = 0.01 (N s/m),

damage evolution parameter, 1 =1,

trapezoidal time-stepping parameter ¢ = 0.5 (mid-point rule),
initial (upper limit) time-step size: At = 0.000001 (s),

iterative tolerance per time step: TOL = 0.000001,

iteration limit per time-step: K, = 6.

Following common practice, for electromagnetic materials, we
write € = €*¢, where €* = 8.854 x 107'2 farads/m is the free space
permittivity and €, is the relative permittivity or “dielectric” con-
stant. The parameter choice for time t = t, was €, = 10. The con-
ductivity at time t = t, was set to o = 10* Siemens/meter. Fig. 5
shows the progressive response of a fabric to current being
pumped in the (initially) e; and e, directions on the boundary.
The colors indicate the charge. Qualitatively, this response should
be expected. In order to see this, consider that initially, assuming
a zero velocity, the electromagnetic force acting on the fabric is

Y™ — PEe, + oEe; x (B'e, + BY"e,) + PEe, + oEe,
x (Bi“e; + BS'ey)
= PE(e, + €;) + 0E(BS" — BY)es. (7.1)
Initially, Gauss’ law asserts that P = 0, and thus
v = gE(BS" — BY")es. (7.2)
In other words, the fabric will be initially pulled upwards, which is
consistent with the numerical results. Thereafter, the charged state

is non-zero, and there are deformation components in the e; and e,
directions.

8. Extensions and conclusions

In general, the properties of most electrically-active materials
are quite sensitive to the temperature. The interconversions of var-
ious forms of energy (electromagnetic, thermal, etc.) in a system
are governed by the first law of thermodynamics,

pw—T : Vil + V- q— pz =0, (8.1)

where w is the stored energy per unit mass (which is a function of
the temperature, 0), 0 is the temperature, p is the density, T is Cau-
chy stress, u is the displacement field, q is heat flux, and pz is the
rate of electromagnetic energy absorbed due to Joule heating

pz=a -E, (8.2)

where 0 < a <1 is an absorption constant. A derivation of Joule-
heating is given in Appendix C. If we consider (a) the effects of
deformation and stress to be insignificant for heating and (b) the
stored thermal energy per unit mass to be w = C6, we obtain

pCO=a] -E = ac(E + v x B™) - E, (83)

where C is the heat capacity per unit mass and 0 < a < 1. The series
of plots in Fig. 6 illustrates the average increase in temperature by
post-processing according to (with a = 0.1)

0(t + At) = 0(t) + AL(F(t + At) + (1 — §)F (1)), (8.4)

where F = - (ao(E + v x B™) - E). For example, one can use the
following decompositions (employing thermo-electromagnetic sat-
uration conditions-Sigmoid functions):

e For the electrical permittivity:
€(0,E) = €,(1 + xp(0,E)) = €,€:(0,E)
= GOEr(ﬁR,ER)g(G — OR,E — ER)7 (85)

where y; is the electric susceptibility, 0 is the temperature and the
last term is a representation around a reference state, for example,
using saturation-type Sigmoid functions of the form

E(0—Op,E—Eg)=1+Kp (] + e’?’m(”*”;z))’l
+ Kz (1 + e 7mlEEl) ™ (8.6)

where the y’s and K's are material parameters, and the terms with
subscript “R” are reference values.
e For the electrical conductivity:

o(0.E) = 0(9R7ER)(1 + Ks1(1 4 e77s1(0-00) 71
+Ks2(1 + e”'ﬂ”E’ER”)’])_ (8.7)

Generally speaking, for many materials, until a saturation
threshold is met, €,(0,E) grows with 0 and ¢(0) decreases with 6.
See the treatise of Jackson [22] for reviews of the rich variety of
possible dielectrical responses of materials, including atomistic-le-
vel discussions to motivate non-linear dielectric behavior. Thermal
effects under further study, along with corresponding coupling to
changes in electrical conductivity and permittivity, by the author.

In summary, this work investigated the deformation of electri-
fied textiles in an externally supplied magnetic field. The electric
field was delivered by running current through the fibers from
an external power source. Since, as the fabric deforms, the current
changes direction and magnitude. In order to simulate such a sys-
tem, one must solve a set of coupled equations governing the
charge distribution, current flow and system dynamics. The defor-
mation of the fabric, as well as the charge distribution and current
flow, are dictated by solving the coupled system of differential
equations for the motion of lumped masses, which are related
through the fiber-segments under the action of electromagneti-
cally-induced forces acting on a reduced order network model,
which was in turn coupled to reduced-order models for the
electrodynamics. The effects of the electric and magnetic fields
were investigated and quantitative numerical simulations were
provided, using an approach based on a temporally-adaptive
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Fig. 5. Electricity pumped in the e, and e, directions from the boundary. The colors indicate the charge.

staggering time-stepping algorithm. A preliminary thermal
analysis was provided and thermal effects are under current
investigation by the author.
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Appendix A. Fabric materials

The base structural fabric materials that we are attempting to
work with and modify are variants of Kevlar and Zylon, in conjunc-
tion with our university, industry and governmental partners (such

as the Federal Aviation Administration (FAA), Boeing, Sandia Na-
tional Laboratories and the Army Research Laboratories). We are
attempting to modify these structural fabrics in order to endow
them with enhanced conductivity for current carrying capabilities,
while retaining these structural strength and light weight. This
experimental work is ongoing. Generally, the microstructure of the
fabric fibers is composed of several microscale fibrils. For example,
fabric materials such as Zylon, which is a polymeric material
produced by the Toyobo Corporation [45], Kevlar and other ara-
mid-based materials have a microstructure comprised of bundles
of microscale “microfibrils” forming the fibers, which is then
tightly woven into sheets. For Zylon, each fiber contains approxi-
mately 350 microfibrils. In order to modify the mentioned struc-
tural fabrics, so that they have enhanced dielectric properties,
while retaining these structural strength and light weight, two
possible methods are
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Fig. 6. Electricity pumped in the e; and e, directions. The colors indicate the temperature contribution from Joule-heating.

1. blending conducting dielectric material into the weave, such as
mixtures of fine-scale iron powder and/or polydimethylsiloxane
and

2. spraying/embedding the fabric with fine-scale conducting par-
ticles to produce desired overall effective conductivities.

The primary approach that we are following is (1). We are
blending amounts of iron powder and polydimethylsiloxane into
Kevlar and Zylon weaves. This type of material development is un-
der investigation currently. We refer the reader to to recent pub-
lished studies by Barham et al. [4-8] using/developing this type
of material. We also note the existence of pure copper polyester
Taffeta Fabric, which is a conductive material that we are also test-
ing at UC Berkeley. We are also testing blends of Taffeta and Zylon
and Taffeta and Kevlar. The computational tool developed in this
paper is designed to help guide the material development and
experimental work.

Remark: In order to illustrate the time-consuming complexity
of experiments in this area, a few comments are in order on the
testing processes for the base structural fabric materials. In partic-
ular, for a number of years we have focussed on on Zylon, which is
a synthetic polymer produced by the Toyobo Corporation [45]
constructed from woven PBO (Polybenzoxale) yarn. Over the last
decade, experiments conducted at our laboratory at UC Berkeley
have attempted to ascertain the number of sheets of Zylon needed
to impede projectiles.'® The typical amount of time taken for a sin-
gle (labor intensive) ballistic test is rather lengthy, on the order of
90 min, and is described in detail in [27,47,52,57,37-39]. In order
to perform the experiments, ballistic sheets of Zylon must be cut
with a pair of special scissors from a fabric roll, clamped around a

10 Reports, accessible to the public, can be obtained by making a request to the
United States Federal Aviation Administration (FAA) indicating project 01-C-AW-
WISU. For further experiments on individual yarn, see [46].
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circular bar and placed into a square holder. The two parts of this
square frame, whose outside dimensions are 356 mm with a
254 mm square window, are secured by 9.5 mm diameter hard
steel bolts via an aluminum strip, which acts as a continuous
washer. After these components are assembled, this device is
clamped vertically to a heavy triangular support, which is mounted
onto a 700 kg steel table so that impact is produced at a preselected
location on the target, as specified by a laser beam mounted on the
gun centerline. The tests are conducted using a custom built gas gun
(12.9 mm inside diameter) with a 20 mm thick high strength steel
barrel of 1.6 m length. This apparatus is mounted by means of a rail
frame onto the same table as the target. The projectile usually con-
sists of a 12.7 mm diameter steel cylinder with a mass of 36 g, with
an aspect ratio of 3:1 which was heat treated to a Rockwell hardness
of R, = 60. Also, it is copper coated to a thickness of 0.5 mils to re-
duce barrel wear. A blast shield is placed in front of the muzzle to
prevent interaction of ejected debris with the target. A projectile
and fragment catcher, consisting of a large cloth filled container, is
positioned beyond all final velocity measuring units. The tests are
conducted inside an enclosed room which is evacuated during firing.
The initial velocity of the projectile was determined from the time
required to successively break two parallel laser beams, 156 mm
apart, which were focused on two photodiodes, located 1.5 m in
front of the target. The signals from the diodes initiate the start
and stop modes of a Hewlett-Packard 5316 time interval meter.
Final velocities are determined in three ways: (1) by the use of a
digital video recording camera, operating at 10,000 frames/s, that
capture the projectile position at a number of instances after the
perforation using the dimensions of the projectile, (2) by means
of two silver coated paper make-circuit grids spaced 50.4 mm
apart, whose voltage pulses are directed to a time interval meter
and (3) from two sets of 432 x 254 mm foils, with each pair sepa-
rated by 12 mm and each set a distance of 12.7 mm apart, with
the projectile contact providing an “on” circuit for each set, allowing
the respective signals to start and stop a time interval meter. The
number of desired sheets are cut and inserted in the target holder
and the bolts were tightened with a 306 N-m torque wrench.

Appendix B. Time-scaling arguments for 22 ~ 0

The formulation pumps electricity through the network, and ac-
counts for any deformation changes the current through a balance
law

P
/]-ndA+/—dV:0éV‘]:0, (11.1)
where 22 = 0 is assumed the current propagates through the fibers
at a much faster time-scale than the deformation of the fabric. The
velocity of the deformation of the fabric is far slower that the rela-
tive movement of charge (propagation of electricity) through the
fabric (which is considered instantaneous). Changes in P are deter-
mined by the Gauss’ law:

/. D -ndA = /'PdV.
Joa Ja

As an illustrative example, in order to appreciate the fast time scales
that justify 22 ~ 0, consider an arbitrary piece of continuum (under-
going no deformation) governed by
o o oP
VJ=06V-E=—-V -D=—P=——,
J € € I ot’
where the following simple constitutive laws were used for illustra-
tion purposes: J = 6E, D = €E and V - D = P. Solving for P yields

(11.4)

(11.2)

(11.3)

P(x,t) = P(x,t = 0)e ¢,

thus
P 0 g
=€ (11.5)

The term e~# is extremely small since the ratio is huge, for example,
€ = 8.854 x 10™'? Farads/meter and ¢ = 10* Siemens/meter, thus
leading to 2~ 10", and —%e ¢ ~ 0 for virtually any time-scales of
interest, thus justifying [, J-ndA = 0. In summary, any changes in
‘P can be considered instantaneous, relative to mechanically-induced
deformations.

Appendix C. Joule heating

Following a special case of general electromagnetic materials in
[59], consider Faraday’s Law

OB
V xE = 5t (12.1)
and Ampere’s Law
oD
VxH—§+] (12.2)

where we recall that E is the electric field, D is the electric field flux,
J is the electric current, H is the magnetic field and B is the magnetic
field flux. Joule-heating can be motivated by forming the inner
product of the magnetic field with Faraday’s law and the inner
product of the electric field with Ampere’s law and forming the dif-
ference to yield

E~(VXH)—H~(V><E):E']+E'%—13+H~g—f,
—_———

Yil

(12.3)

~V.(ExH)=-V§

=

<

3

where W=1(E-D+H-B)=1(E-€-E+H u-H) is the electro-
magnetic energy and where S = E x H is the Poynting vector. Thus
ow

¥ +V.-S=—J-E.
Eq. (12.4) is usually referred to as Poynting’s theorem, and can be
interpreted, for simple material laws, where the previous representa-
tion for W holds, as stating that the rate of change of electromagnetic
energy within a volume, plus the energy flowing out through a
boundary, is equal to the negative of the total work done by the
fields on the sources and conduction. We consider the absorbed en-
ergy that is available for heating to be proportional to the energy
associated with conduction, namely, from Eq. (12.4), J - E, and ac-
count for it via pz=aJ-E, where a is an absorption constant,
0<a<.

(12.4)
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