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In many small-scale devices, the materials employed are functionalized (doped) with
microscale and/or nanoscale particles, in order to deliver desired overall dielectric prop-
erties. In this work, we develop a reduced-order lumped-mass model to characterize the
dynamic response of a material possessing a microstructure that is comprised of an
electromagnetically-neutral binder with embedded electromagnetically-sensitive
(charged) particles. In certain industrial applications, such materials may encounter
external electrical loading that can be highly oscillatory. Therefore, it is possible for the
forcing frequencies to activate the inherent resonant frequencies of these micro- and
nanostructures. In order to extract qualitative information, this paper first analytically
investigates the mechanical and electromagnetic (cyclotronic) contributions to the
dynamic response for a single particle, and then quantitatively investigates the response
of a model problem consisting of a coupled multiparticle periodic array, via numerical
simulation, using an implicit temporally-adaptive trapezoidal time-stepping scheme. For
the model problem, numerical studies are conducted to observe the cyclotronically-
dominated resonant frequency and associated beat phenomena, which arises due to the
presence of mechanical and electromagnetic harmonics in the material system.
[DOI: 10.1115/1.4023251]

Keywords: particulate composites, electromagnetics, vibration

1 Introduction and Objectives

The motivation for this analysis is the functionalization of
materials by the introduction of small-scale particles into a base
material, as shown in Fig. 1. The specific materials of interest are
comprised of an electrically-neutral binding material that is easy
to form and electromagnetically-sensitive (charged) particles that
are used to modify the overall response of the material to achieve
a desired effect. The scientific analysis of materials with a
particle-laden microstructure dates back at least to Maxwell [1,2],
and Lord Rayleigh [3]. For an extensive overview of the field, see
Torquato [4], while for more mathematical aspects, see Jikov
et al. [5], for solid-mechanics oriented analyses see Hashin [6],
Markov [7], Mura [8], Nemat-Nasser and Hori [9], Huet [10,11],
and for computational aspects see Zohdi and Wriggers [12], Zohdi
[13] and, recently, Ghosh [14], Ghosh and Dimiduk [15]. Applica-
tions for such materials are driven by the extensive sensor, actua-
tor, and MEMS industries. For specific applications, see Rebeiz
et al. [16], Quandt and Ludwig [17], Grimes et al. [18], and Kou-
zoudis and Grimes [19,20], Azevedo et al. [21], Jones et al. [22],
and Myers et al. [23]. In certain instances, these materials are used
in conjunction with static magnetic fields to facilitate devices
which handle time-varying electrical loads. In these cases, on-
chip magnets (permanent, passive, inductors) have become critical
in the continuous miniaturization, and the reduction of available
chip layout area, of electronic devices. We refer the reader to
Yamaguchi et al. [24,25,26], Zhuang et al. [27–29], Kim et al.
[30], Gardner et al. [31,32], Viala et al. [33,34], Xu et al. [35],
Jiang et al. [36], Ikeda et al. [37], Zhao et al. [38], Hsu et al. [39],
Salvia et al. [40], Rosselle et al. [41], and Wallace [42] for a
cross-sectional view of the field.

Because the external electrical loads are highly oscillatory, it is
possible for the forcing frequencies to approach the resonant fre-
quencies of these micro- and nanostructures, or to exhibit vibra-
tional characteristics that can eventually lead to device
breakdown. With this issue as a motivation, this paper develops a
reduced-order lumped-mass model to characterize the dynamics
of particle groups that are bound to an electromagnetically-neutral
medium, in the presence of and externally-controlled electromag-
netic field, Bext and Eext. Specifically, the ith particle in a collec-
tion of charged particles i ¼ 1; 2; :::;Np is governed by a balance
of forces

mi _vi ¼ qiðEext þ vi � BextÞ þ
XN

j6¼i

Wij þWb
i (1)

where mi is the particle mass, vi is the particle velocity, qi is the
charge of the particle, Wij represents the interaction of the particle
with all other particles in the system and Wb

i represents the bind-
ing force between the particle and the surrounding medium. In
this reduced-order model, the only role of the binding medium is
to tether the particles to their original equilibrium (at t ¼ 0) posi-
tions. The analysis proceeds as follows:

• First, in order to extract qualitative system behavior, an ana-
lytical investigation of the response of an isolated particle in
an oscillatory electric and static magnetic field bound is ini-
tially undertaken.

• Second, in order to extract quantitative characteristics of
coupled multiparticle systems, a numerical analysis is under-
taken. The paper concludes with a discussion of the possible
continuum modeling extensions for these types of systems.

2 Qualitative Analysis: Motion of a Single Particle

Before addressing the full-blown, multiparticle coupled system
under oscillatory electric and static magnetic fields, in order to
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qualitatively understand the individual electromagnetic and me-
chanical contributions, we consider three single-particle cases:

• Case 1: static electric and static magnetic fields acting on a
single particle

• Case 2: static electric and static magnetic fields acting on a
single particle that is bound (“tethered”) to a point in space

• Case 3: oscillatory electric and static magnetic fields acting
on a single particle that is bound to a point in space.

We recall the following important observation conjunction with
electromagnetic phenomena (Jackson [43]):

• If a point charge (q) is in an electric field, E, it experiences
an electrically-induced force, We ¼ qE.

• If a point charge is moving in a magnetic field, B, it experien-
ces a magnetically-induced force, Wm ¼ qv� B.

• If the fields occur simultaneously, then the electromagnetic
force on the point charge is Wem ¼ qEþ qv� B.

We consider an isolated charged mass with position vector
denoted by r, governed by ( _r ¼ v; €r ¼ _v)

m _v ¼ qðEþ v� BÞ (2)

The governing Eq. (2), written in component form is, for compo-
nent 1:

_v1 ¼
q

m
ðE1 þ ðv2B3 � v3B2ÞÞ (3)

for component 2:

_v2 ¼
q

m
ðE2 � ðv1B3 � v3B1ÞÞ (4)

and for component 3:

_v3 ¼
q

m
ðE3 þ ðv1B2 � v2B1ÞÞ (5)

With the appropriate simplifications; for example that
Eext ¼ ðEext

1 ;Eext
2 ;Eext

3 Þ is an independent (not dependent on the
particles) external electric field and Bext ¼ ðBext

1 ;Bext
2 ;Bext

3 Þ is an
independent external magnetic field.

(a) Case 1: static electric and static magnetic fields
(Eext ¼ Eext

1 e1 and Bext ¼ Bexte3) acting on a single
particle.
In the special case when rðt ¼ 0Þ ¼ 0, vðt ¼ 0Þ ¼ 0,
Bext ¼ Bext

3 e3 and Eext ¼ Eext
1 e1, the governing equations

are written in component form, for component 1:

_v1 ¼
q

m
ðE1 þ v2B3Þ (6)

for component 2:

_v2 ¼ �
q

m
v1B3 (7)

and for component 3:

_v3 ¼ 0 (8)

The solution for the dynamics of an isolated particle is

v1ðtÞ
v2ðtÞ
v3ðtÞ

8><
>:

9>=
>; ¼

Eext
1

Bext
3

sinxt

Eext
1

Bext
3

cosxt� 1ð Þ

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
)

r1ðtÞ
r2ðtÞ
r3ðtÞ

8><
>:

9>=
>;

¼

Eext
1

Bext
3 x

1� cosxtð Þ

Eext
1

Bext
3

sinxt

x
� t

� �
0

8>>>><
>>>>:

9>>>>=
>>>>;

(9)

where x ¼ qBext
3 =m

� �
is known as the cyclotron fre-

quency. The cyclotron frequency (“gyrofrequency”) is
the angular frequency at which a charged particle makes
circular orbits in a plane perpendicular to the static mag-
netic field. Notice that this traces out the equation of a
“planar helix” with a radius parameter of

R ¼ Eext
1

Bext
3 x
¼ mEext

1

ðBext
3 Þ

2q
(10)

in the x1 � x2 plane with x1 coordinate fixed at
x1 ¼ Eext

1 =Bext
3 x

� �
that moves in the x2 direction. We

define the corresponding time period for one cycle to be
completed as T ¼def

2p=x. The basic trends are:
• as Bext

3 !1 the radius shrinks at an inverse-quadratic
rate and there is no motion

• as Eext
1 !1 the radius grows at a linear rate

• as m!1 the radius grows at a linear rate and
• as q!1 the radius shrinks at an inverse linear rate
Remark. All the previous results collapse to those of
classical mechanical vibrations when Bext

3 ¼ 0. The
approach is to differentiate the equation governing the
first component, and then substitute the equation govern-
ing the second component and to solve a harmonic equa-
tion for the velocity of the first component, which is
then used to generate the second component’s solution.
Both are then integrated in time to obtain the positions.

(b) Case 2: static electric and static magnetic fields acting
on a single particle that is bound to a point in space.
Let us introduce a linear restoring force that tethers the
particle in the x1 direction, written in component form,
for component 1:

_v1 ¼
q

m
ðE1 þ v2B3Þ �

k1r1

m
(11)

where k1 is a stiffness coefficient (Newtons/meter), and
for component 2:

_v2 ¼ �
q

m
v1B3 (12)

and for component 3:

_v3 ¼ 0 (13)

Fig. 1 A base, electromagnetically-neutral, solid that is doped
with electromagnetically-sensitive particulates
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The solution is

v1ðtÞ
v2ðtÞ
v3ðtÞ

8><
>:

9>=
>; ¼

qEext
1

mc
sinct

x
c

qEext
1

mc
cosct� 1ð Þ

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
)

r1ðtÞ
r2ðtÞ
r3ðtÞ

8><
>:

9>=
>;

¼

qEext
1

mc2
1� cosctð Þ

x
c

qEext
1

mc
sinct

c
� t

� �
0

8>>>><
>>>>:

9>>>>=
>>>>;

(14)

where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k1

m

r
(15)

represents a shift of the cyclotronic natural frequency
(x). All the results in this section collapse to those of
classical mechanical vibrations when Bext

3 ¼ 0.
(c) Case 3: oscillatory electric and static magnetic fields act-

ing on a single particle that is bound to a point in space.
Introducing Eext

1 ¼ Eext
0 sinXt, where Eext

0 is the ampli-
tude, the solution is

v1ðtÞ
v2ðtÞ
v3ðtÞ

8><
>:

9>=
>; ¼

A cosXt� cosctð Þ

Ax
1

c
sinct� 1

X
sinXt

� �
0

8>>><
>>>:

9>>>=
>>>; (16)

and

r1ðtÞ
r2ðtÞ
r3ðtÞ

8<
:

9=
; ¼

A
1

X
sinXt� 1

c
sinct

� �
Ax

1

X2
cosXt� 1ð Þ � 1

c2
cosct� 1ð Þ

� �
0

8>>>><
>>>>:

9>>>>=
>>>>;

(17)

where

A ¼ q

m

Eext
0 X

c2 � X2

� �
(18)

Clearly, resonance occurs at X ¼ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k1=mð Þ

p
.

which yields unbounded solutions. Thus, one may be
able to induce extremely large amplitudes with the
appropriate electric and magnetic fields. One important
point is that there is an electromagnetic frequency that
adds to the system response; in addition to a mechanical
one, even in the case where magnetic load is static.
Remark. Equation (17) indicates beatlike phenomena
can occur. Recall, beatlike phenomena occurs when two
harmonic forms are combined. For example, consider

rðtÞ ¼ Acosxtþ Acosðxþ DxÞt (19)

which can be rewritten as

rðtÞ ¼ Acosxtþ Acosðxþ DxÞt

¼ 2A cos
Dx
2

t

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

time�varying�amplitude

cos xþ Dx
2

� �
t (20)

As we will see later for groups of particles, there will be
fast scale cyclotron-induced motion and slow scale
motion, which is mechanically-induced.

3 Modeling Coupled Multiparticle Systems

The objects in the system are assumed to be small enough to be
considered (idealized) as point-mass particles. We consider a
group of nonintersecting particles (Np in total) and build on the
previous works of Zohdi [44–52]. The equation of motion for the
ith particle in a system is

mi€ri ¼ Wtot
i ðr1; r2; :::; rNp

Þ ¼ Wnf
i þWenv

i (21)

where ri is the position vector of the ith particle and where Wtot
i

represents all forces acting on particle i, which is decomposed
into the sum of forces due to near-field interaction (Wnf ) and the
surrounding environment (Wenv)1.

(a) Particle-to-particle “near-field” interaction.
We recall that the force between two electrically
charged particles is given by (Coulomb’s law)

We
ij ¼

qiqj

4p�jjri � rjjj2
nij (22)

where We
ij is the force acting between the particles, qi is

the charge of particle i, qj is the charge of particle j, � is
the permittivity and nij is the normal direction, deter-
mined by the difference in the position vectors of the
particles’ centers, defined by

nij ¼
def� ri � rj

jjri � rjjj
¼ rj � ri

jjri � rjjj
(23)

where jjri � rjjj is the separation distance between par-
ticles i (located at ri) and j (located at rj) and jj � jj repre-
sents the Euclidean norm in R3. Usually, one writes
� ¼ �o�r where �o ¼ 8:854� 10�12 farads/meter is the
free space permittivity and �r is the relative permittivity
or “dielectric” constant. For point charges of like sign,
the Coulombic force is one of repulsion, while for oppo-
site charges the force is attractive. Continuum formula-
tions of Maxwell’s equations could be applied at the
scale, however, the system of numerical equations will
become enormous. This is discussed at the end of the
paper. For this reason, reduced-order, empirically-generated
effective interaction laws for complex charged-
particulate interaction, which possess attractive and re-
pulsive components, are employed. Following Zohdi
[44–52], a simple form that captures basic interaction
characteristics is

Wnf
i ¼

XNp

j6¼i

a1ijjjri � rjjj�b1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
attraction

� a2ijjjri � rjjj�b2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
repulsion

0
B@

1
CA nij|{z}

unit vector

(24)

where the a’s and b’s are empirical material parameters.
We note that there are a variety of possible interparticle
representations for charged particles. We refer the reader
to Frenklach and Carmer [53], Haile [54], Hase [55],
Rapaport [56], Torquato [57], Rechtsman et al. [58,59]
and Zohdi [44–52] for overviews of the various repre-
sentations for particle interaction, such as those based on
Mie, Lennard–Jones, and Morse potentials (see

1Such forces can arise from surrounding medium and the external
electromagnetic fields.
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Moelwyn-Hughes [60] for reviews). Also, three-body
terms can be introduced directly into the interparticle
interaction (Stillinger [61]) or via termwise modifica-
tions to the two-body representations (Tersoff [62]).
Remark. In the Appendix, numerical techniques for
accurately solving the coupled set of nonlinear differen-
tial equations that arise in Eq. (21), using an implicit
temporally-adaptive trapezoidal time-stepping scheme,
are discussed in detail.

(b) Particle-to-particle interaction “stiffness.”
Some important qualitative information can be deter-
mined about the interaction law in Eq. (24), if we con-
sider a linearization of a single nonlinear differential
equation, describing the attraction and repulsion from
the origin (ro ¼ 0) of the form2

m€r ¼ Wnf ðrÞ (25)

where

Wnf ðrÞ ¼ �a1r�b1 þ a2r�b2 (26)

Upon linearization of the nonlinear interaction relation
about a point r�,

Wnf ðrÞ � Wnf ðr�Þ þ
@Wnf

@r
jr¼r�
ðr � r�Þ þ Oðr � r�Þ2

(27)

and normalizing the equations, we obtain

€r þ ðx�nÞ
2r ¼ f �ðtÞ

m
(28)

where

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@W

nf

@r
jr¼r�

m

vuut
(29)

and where

f �ðtÞ ¼ Wnf ðr�Þ �
@Wnf

@r
jr¼r�

r� (30)

For the specific interaction form chosen we have

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1b1r

�b1�1
� þ a2b2r

�b2�1
�

m

s
(31)

and where the “loading” is

f �ðtÞ ¼ �a1r�b1
� þ a2r�b2

� � a1b1r�b1�1
� þ a2b2r�b2�1

�
(32)

We note that if the following specific choice of parame-
ters is made ðb1;b2Þ ¼ ð1; 2Þ, and r� is chosen as the
static equilibrium point, re, where Wnf ðreÞ ¼ 0, then
r� ¼ re ¼ a2=a1ð Þ and

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

a1

a2

� �2

m

vuuut
¼def

ffiffiffiffiffi
k�

m

r
(33)

where k� ¼def
a1 a1=a2ð Þ2 Thus, if we keep the ratio a1=a2

constant, while increasing a1, we effectively increase the
interaction “stiffnesses” between particles.

4 Numerical Examples: A Model Problem

We considered the response of a sample comprised of a
7� 7� 7 periodic (cubic) array of particles in Fig. 2 embedded in
a binding medium, due to external oscillatory loading. In this
reduced-order model, the only role of the binding medium was to
tether the particles to their original equilibrium (t ¼ 0) positions.
In the conclusions, a discussion of the extensions to modeling
these systems as a continuum, where the binder deformation
would be accounted for, is provided. As for the isolated, single
particle example, for each particle, viðt ¼ 0Þ ¼ 0, Bext ¼ Bext

3 e3

and Eext ¼ Eext
1 e1, where Eext

1 ¼ Eext
0 sinXt. The test parameters

used in the example (where the domain is a 0:2m� 0:2m� 0:2m
sized cube) were

• the masses of the particles: mi ¼ q 4=3ð Þpr3
i , where q ¼ 2000

kg=m3, ri ¼ 0:005 m
• for the particle-to-particle interaction law: ða1;b1; a2; b2Þ
¼ ð2; 1; 1; 2Þ

• the charges of the particles: qi ¼ 1 C
• the static magnetic field: Bext

3 ¼ 1 Tesla
• the oscillatory electric field amplitude: Eext

0 ¼ 0:1 N/C
• the binding constant to the medium: k ¼ 0:5 N/m

The overall response of the CG is shown in Fig. 3 for various
responses to the values of the forcing frequencies below:

(a) X ¼ 0:1x
(b) X ¼ 0:2x
(c) X ¼ 0:4x
(d) X ¼ 0:8x
(e) X ¼ 1:0x (near cyclotronic resonance)
(f) X ¼ 1:2x
(g) X ¼ 1:4x and
(h) X ¼ 1:8x

For this specific example, the following quantities are
important:

• cyclotronic contribution: x ¼ qB=m ¼ 1819:38531=s (for
this example)

Fig. 2 The model problem for the numerical simulation. It is a
periodic array of 73737 charged particles embedded in a binding
medium, due to external oscillatory loading. As for the isolated,
single particle example, for each particle, vi ðt 5 0Þ5 0,
Bext 5 Bext

3 e3 and Eext ¼ Eext
1 e1, where Eext

1 ¼ Eext
0 sinXt .

2The unit normal has been taken into account; thus the presence of a change in
sign.
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Fig. 3 Various responses of the CG of the sample to the values of the forcing frequency,
left to right and top to bottom: (a) X 5 0:1x, (b) X 5 0:2x, (c) X 5 0:4x, (d) X 5 0:8x, (e)
X 5 1:0x (very near to resonance), (f) X 5 1:2x, (g) X 5 1:4x and (h) X 5 1:8x. Note that as
for the isolated, single particle example, for each particle, vi ðt 5 0Þ5 0, Bext 5 Bext

3 e3 and
Eext 5 Eext

1 e1, where Eext
1 5 Eext

0 sinXt .
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• binding contribution:
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 21:85091=s (k is the

medium’s stiffness), where

Wb
i ¼ kðri1�ri1ðt¼0ÞÞ; kðri2�ri2ðt¼0ÞÞ; kðri3�ri3ðt¼0ÞÞð Þ

(34)

• combined terms:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k=m

p
¼ 1819:51651=s

• particle-to-particle contribution: x�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 a1=a2ð Þ2=m

q
¼ 87.4038 1=s

Notably, the oscillatory nature of Eext induces mechanical and
electromagnetic responses. As X approaches the cyclotronic fre-
quency, the vibrations grow dramatically, as seen in the plot in
Fig. 3 for X ¼ x. As one may observe in Fig. 3, “beat” phenom-
ena occurs in all cases, due to the combinations of harmonics that
arise from the mechanical binding, electromagnetic field and near-
field interaction. In particular, for the parameter sets chosen, it is
observed that the fast cyclotronic vibration can be attributed to the
magnetic field and there are two slow “restoring” frequencies
from (a) the medium and (b) the particle-to-particle near-field
interaction (Eq. (20)). It is important to emphasize that, with the
applied numerical scheme (see Appendix), the formulation pro-
vided in this paper is general enough to consider random distribu-
tions of particles.

5 Closing Comments and Extensions

For the considered material systems, more complex continuum
models are clearly possible, and may be necessary in certain appli-
cations. However, such models are extremely computationally-
intensive, since the entire medium must be discretized with a
spatial mesh, leading to a huge number of equations. For example,
for a continuum formulation, in order to accurately capture the
coupled (time-transient) electromagnetic and mechanical behav-
ior, in particular Joule-heating, of a particle-laden material, Zohdi
[63] developed a staggered temporally-adaptive finite difference
time domain (FDTD) method that resolved the continuum electric,
magnetic and mechanical fields throughout the material. Several
million spatial grid points were needed to compute the fields accu-
rately, for samples of materials containing a only a few hundred
particles in a binding matrix. Other direct numerical simulation
approaches are also applicable, and may have advantages over
one another, depending on the material microstructure and the
specific physics involved. Such methods include: (a) the Multi-
Resolution Time Domain Method, which is based on wavelet-
based discretization, (b) the Finite Element Method, which is
based on discretization of variational formulations and which are
well-suited for irregular geometries, (c) the Pseudo Spectral Time
Domain Method, which is based on Fourier and Chebyshev trans-
forms, followed by a lattice or grid discretization of the trans-
formed domain (d) the Discrete Dipole Approximation, which
based on an array of dipoles solved iteratively with the Conjugate
Gradient method and a Fast Fourier Transform to multiply matri-
ces, (e) the Method of Moments, which is based on integral formu-
lations employing Boundary Element Method discretization, often
accompanied by the Fast Multipole Method to accelerate summa-
tions needed during the calculations and (f) the Partial Element
Equivalent Circuit Method, which is based on integral equations
that are interpreted as circuits in discretization cells. The develop-
ment of robust numerical methods, utilizing methods (a)–(f), in
conjunction with FDTD, is under current investigation by the
author, for continuum formulations of the vibrational particle-
laden systems studied in this paper.

Appendix: Numerical Methods: Time-Stepping and

Adaptive Recursion

Integrating Eq. (21) leads to (a trapezoidal rule with
0 � u � 1)

viðtþ DtÞ ¼ viðtÞ þ
1

mi

ðtþDt

t

Wtot
i dt

¼ viðtÞ þ
1

mi

ðtþDt

t

ðWnf
i þWenv

i Þdt

� �

� viðtÞ þ
Dt

mi
/ðWnf

i ðtþ DtÞ þWenv
i ðtþ DtÞÞ

�
þð1� /ÞðWnf

i ðtÞ þWenv
i ðtÞÞÞ (A1)

The position can be computed via

riðtþ DtÞ ¼ riðtÞ þ viðtÞDtþ /ðDtÞ2

mi

� /ðWnf
i ðtþ DtÞ þWenv

i ðtþ DtÞÞ
�

þð1� /ÞðWnf
i ðtÞ þWenv

i ðtÞÞÞ (A2)

Remark. Generally speaking, if a recursive process is not
employed (an explicit scheme), the iterative error can accumulate
rapidly. However, an overkill approach involving very small time
steps, smaller than needed to control the discretization error, sim-
ply to suppress a nonrecursive process error, is computationally
inefficient. This is discussed next.

(a) Iterative (implicit) solution method.
We now formulate an adaptive iterative scheme by building on

an approach found in various forms in Zohdi [44–52]. We write
Eq. (A2) in a slightly more streamlined form for particle i:

rLþ1
i ¼rL

i þ vL
i Dtþ/Dt

mi

� /ðWnf ;Lþ1
i þWenv;Lþ1

i Þþð1�/ÞðWnf ;L
i þWenv;L

i Þ
� 	

Dt
� 	

(A3)

which leads to a coupled set equations for i ¼ 1; 2; :::;Np par-
ticles3. The set of equations represented by Eq. (A3) can be solved
recursively. Equation (A3) can be solved recursively by recasting
the relation as

rLþ1;K
i ¼ rL

i þ vL
i Dtþ /ðDtÞ2

mi
ð1� /ÞðWnf

i ðrLÞ þWenv
i ðrLÞÞ

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

þ /ðDtÞ2

mi
uðWnf ;Lþ1;K�1

i þWenv;Lþ1;K�1
i Þ

� 	
;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðrLþ1;K�1
i Þ

(A4)

where

Wnf or env;L
i ¼def

Wnf or env;L
i ðrL

1 ; r
L
2 ; :::; r

L
NÞ (A5)

and

Wnf or env;Lþ1;K�1
i ¼def

Wnf or env;Lþ1;K�1
i ðrLþ1;K�1

1 ;rLþ1;K�1
2 ; :::;rLþ1;K�1

N Þ
(A6)

which is of the form rLþ1;K
i ¼ GðrLþ1;K�1

i Þ þ Ri, where
K ¼ 1; 2; 3; ::: is the index of iteration within time step Lþ 1 and
Ri is a remainder term that does not depend on the solution. The
convergence of such a scheme is dependent on the behavior of G.
Namely, a sufficient condition for convergence is that G is a con-
traction mapping for all rLþ1;K

i ;K ¼ 1; 2; 3; ::: In order to investi-
gate this further, we define the iteration error as

3The superscript L is a time interval counter.
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-Lþ1;K
i ¼def

rLþ1;K
i � rLþ1

i (A7)

A necessary restriction for convergence is iterative self consis-
tency, i.e., the “exact” (discretized) solution must be represented
by the scheme, rLþ1

i ¼ GðrLþ1
i Þ þ Ri. Enforcing this restriction, a

sufficient condition for convergence is the existence of a contrac-
tion mapping

rLþ1;K
i � rLþ1

i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}











-Lþ1;K

i

¼ GðrLþ1;K�1
i Þ�GðrLþ1

i Þ


 

� gLþ1;K rLþ1;K�1

i




�rLþ1

i k (A8)

where, if 0 � gLþ1;K < 1 for each iteration K, then -Lþ1;K
i ! 0

for any arbitrary starting value rLþ1;K¼0
i , as K !1, which is a

contraction condition that is sufficient, but not necessary, for con-
vergence. The convergence of Eq. (A4) is scaled by
g / ½ðuDtÞ2=mi�. Therefore, we see that the contraction constant
of G is (1) directly dependent on the strength of the interaction
forces (jjWjj), (2) inversely proportional to mi and (3) directly pro-
portional to ðDtÞ2 (at time¼ t). Thus, decreasing the time step size
improves the convergence. In order to simultaneously maximize
the time step sizes to decrease overall computing time, while still
meeting an error tolerance on the numerical solution’s accuracy,
we build on an approach found in Zohdi [44] originally developed
for continuum thermo-chemical multifield problems, in which one
approximates gLþ1;K � SðDtÞp, (S is a constant) and one assumes
that the error within an iteration to behave according to
ðSðDtÞpÞK-Lþ1;0 ¼ -Lþ1;K , K ¼ 1; 2; :::, where -Lþ1;0

¼ rLþ1;K¼1 � rL is the initial norm of the iterative (relative) error
and S is intrinsic to the system, where; for example, for the class
of problems under consideration, due to the quadratic dependency
on Dt, p � 2. Our goal is to meet an error tolerance in exactly a
preset (the analyst sets this) number of iterations. To this end, one
writes ðSðDttolÞpÞKd -Lþ1;0 ¼ TOL, where TOL is a tolerance and
where Kd is the number of desired iterations. If the error tolerance
is not met in the desired number of iterations, the contraction con-
stant gLþ1;K is too large. Accordingly, one can solve for a new
smaller step size, under the assumption that S is constant,

Dttol ¼ Dt
ð TOL
-Lþ1;0Þ

1

pKd

-Lþ1;K

-Lþ1;0

� � 1

pK

0
BBBBBB@

1
CCCCCCA (A9)

The assumption that S is constant is not critical, since the time
steps are to be recursively refined and unrefined throughout the
simulation. Clearly, the expression in Eq. (A9) can also be used
for time step enlargement, if convergence is met in less than Kd

iterations (typically chosen to be between five to ten iterations).
Specifically, the solution steps are, within a time step:

(1) start a global fixed iteration (set i ¼ 1 and K ¼ 1)
(2) if i > Np then go to (4)
(3) if i � Np then:

(a) compute the position r
Lþ1;K
i

(b) go to (2) for the next particle (i ¼ iþ 1)

(4) measure error (normalized) quantities

(a) -K ¼
def
PNp

i¼1
jjrLþ1;K

i �rLþ1;K�1
i jjPNp

i¼1
jjrLþ1;K

i �rL
i jj

(b) ZK ¼
def -K

TOL

(c) UK ¼
def

�
TOL
-0

	 1
pKd

ð-K

-0
Þ

1

pK

0
BBB@

1
CCCA

(5) if the tolerance is met: ðZK � 1Þ and K < Kd then
(a) increment time: t ¼ tþ Dt
(b) construct the next time step: ðDtÞnew ¼ UKðDtÞold

(c) select the minimum size: Dt ¼ MINððDtÞlim; ðDtÞnewÞ
and go to (1)

(6) if the tolerance is not met: ðZK > 1Þ and K < Kd then
(a) update the iteration: K ¼ K þ 1
(b) reset the particle counter: i ¼ 1
(c) go to (2)

(7) if the tolerance is not met ðZK > 1Þ and K ¼ Kd then
(a) construct a new time step: Dt ¼ UKDt
(b) restart at time t and go to (1)

Time step size adaptivity is critical, since the system’s dynam-
ics and configuration can dramatically change over the course of
time, possibly requiring quite different time step sizes to control
the iterative error. However, to maintain the accuracy of the time-
stepping scheme, one must respect an upper bound dictated by the
discretization error, i.e., Dt � Dtlim. Note that in step (5), UK may
enlarge the time step if the error is lower than the preset tolerance.
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